III: Medium: Collaborative Research: Robust Large-Scale Electronic Medical Record Data Mining Framework to Conduct Risk Stratification for Personalized Intervention

III:媒介:协作研究:强大的大规模电子病历数据挖掘框架,用于进行个性化干预的风险分层

基本信息

  • 批准号:
    1836938
  • 负责人:
  • 金额:
    $ 20.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The increasingly large amounts of Electronic Medical Record (EMR) data offer unprecedented opportunities for EMR data mining to enhance health care experiences for personalized intervention, improve different diseases risk stratifications, and facilitate understanding about disease and appropriate treatment. To solve the key and challenging problems in mining such large-scale heterogeneous EMRs, the investigators aim to develop: (i) new computational tools to automate the EMRs processing, including new techniques for filling in missing values using a new robust rank-k matrix completion method; (ii) annotation of unstructured free-text EMRs using multi-label multi-instance learning; (iii) a new sparse multi-view learning model to integrate heterogeneous EMRs to predict the readmission risk of Heart Failure (HF) patients and to support personalized intervention; (iv) novel methods for identifying the longitudinal patterns using high-order multi-task learning; (v) a nonparametric Bayesian model for predicting the event time outcomes of the HF patients readmission. The sparse multi-view feature learning and robust multi-task longitudinal pattern finding algorithms have a broad range of applications beyond EMR data mining. Free dissemination of source implementations of the algorithms enable other researchers to further develop and apply the resulting techniques. In particular, the methods and tools are expected to impact other EMR and public health research. This project offers enhanced opportunities for research-based advanced training of students (including members of minorities and under-served populations) and integration of research results into curricula at the University of Texas at Arlington, the University of Texas Southwestern Medical Center at Dallas, and Southern Methodist University. For further information see the web site at: http://ranger.uta.edu/~heng/NSF-III-1302675.html
日益海量的电子病历(EMR)数据为电子病历数据挖掘提供了前所未有的机遇,以增强个性化干预的医疗体验,改善不同疾病的风险分层,促进对疾病的了解和适当的治疗。为了解决挖掘这种大规模异质EMR的关键和挑战性问题,研究人员的目标是开发:(I)新的计算工具来自动化EMR处理,包括使用新的稳健的秩k矩阵补全方法来填充缺失值的新技术;(Ii)使用多标签多实例学习来标注非结构化自由文本EMR;(Iii)新的稀疏多视图学习模型,以集成异质EMR来预测心力衰竭(HF)患者的再入院风险并支持个性化干预;(Iv)使用高阶多任务学习来识别纵向模式的新方法;(V)非参数贝叶斯模型用于预测心力衰竭患者再入院的事件时间结局。稀疏多视点特征学习和稳健的多任务纵向模式发现算法在电子病历数据挖掘之外有着广泛的应用。免费传播算法的源代码实现使其他研究人员能够进一步开发和应用所产生的技术。特别是,这些方法和工具预计将影响其他EMR和公共卫生研究。该项目提供了更多的机会,为学生(包括少数族裔成员和服务不足的人群)提供基于研究的高级培训,并将研究成果纳入德克萨斯大学阿灵顿分校、达拉斯得克萨斯大学西南医学中心和南方卫理公会大学的课程。欲了解更多信息,请访问网站:http://ranger.uta.edu/~heng/NSF-III-1302675.html。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Huang其他文献

Perianesthesia Care of the Oncologic Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy: A Retrospective Study.
接受热腹腔化疗肿瘤细胞减灭术的肿瘤患者的围麻醉护理:一项回顾性研究。
Functional analysis of cardiac MR images using SPHARM modeling
使用 SPHARM 建模对心脏 MR 图像进行功能分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heng Huang;Li Shen;J. Ford;F. Makedon;Rong Zhang;Ling Gao;J. Pearlman
  • 通讯作者:
    J. Pearlman
Monitoring Association of Membrane Proteins with Micro-Domains and Cytoskeleton in Live Cells During Signaling and Perturbation
  • DOI:
    10.1016/j.bpj.2010.12.1596
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Heng Huang;Arnd Pralle
  • 通讯作者:
    Arnd Pralle
Modeling study on anisotropic heat conduction of PEMFC GDLs facilitated by Micro-CT
基于微CT的质子交换膜燃料电池气体扩散层各向异性热传导的建模研究
  • DOI:
    10.1016/j.ijheatmasstransfer.2025.127302
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Hang Liu;Xuecheng Lv;Heng Huang;Yang Li;Deqi Li;Zhifu Zhou;Wei-Tao Wu;Lei Wei;Yubai Li;Yongchen Song
  • 通讯作者:
    Yongchen Song
Research on Virtual Enterprise Workflow Modeling and Management System Implementation
虚拟企业工作流建模及管理系统实现研究

Heng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Huang', 18)}}的其他基金

Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2405416
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
  • 批准号:
    2225775
  • 财政年份:
    2022
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了