EAGER: Understanding Molecular Control and Phase Behavior of Random Heteropolymer Materials for Selective Transport
EAGER:了解用于选择性传输的随机杂聚物材料的分子控制和相行为
基本信息
- 批准号:1836961
- 负责人:
- 金额:$ 29.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:In nature, membrane proteins are the gatekeepers that mediate molecular transport to maintain cellular processes. If polymers can be generated with separation performance similar to that of membrane proteins, they could offer very significant impacts on the environment, energy, separation technologies, and life sciences. For example, membranes are in high use for water purification and desalination, carbon dioxide capture and separation, chemical purification, and lithium battery applications. Over decades there have been significant efforts in improving polymer chemistry and self-assembly to better mimic the known structures of membrane proteins, which have led to limited advances in membrane performance. The bottleneck is to identify critical design parameters in these highly complex and diverse biological systems. By fundamentally understanding the spatial arrangement of a polymer chain inserted in a cellular lipid analogue and correlating it with molecular transport, this project aims to provide insights to the long-standing question: "what level of molecular control over polymeric materials is needed to replicate protein transport properties?" If successful, the project may result in new design rules for bio-inspired polymers, change the pathways for membrane development, and lead to technologically relevant membranes. The proposed studies are highly interdisciplinary and afford an excellent platform for training students at all levels. They will also provide software tools for polymer analysis as well as multiple outreach opportunities.TECHNICAL SUMMARY:For membrane proteins the common belief is that well-defined protein structure is requisite to simultaneously achieving high flux and selectivity. For decades, various porous materials have been designed following this rule and explored for selective transport with limited success. Based on preliminary results using random heteropolymers, the central hypothesis for the proposed study is that once the heteropolymer composition is fixed, the statistical monomer distribution, rather than the atomically precise polymer structure, is the key parameter governing the resulting transport properties. This project aims to test this hypothesis by: (1) developing software tools to perform in-depth analysis of random heteropolymer sequence; (2) characterizing heteropolymer chain conformation upon lipid insertion to correlate the heteropolymer phase behavior with rapid, selective proton transport; (3) exploring heteropolymer-based block copolymers for analysis of heteropolymer chain conformation and transport properties for future membrane design. Preliminary results point to the potential that unstructured polymer chains can perform at similar level as well-folded proteins for proton transport. The planned exploratory studies will identify the critical design parameters behind such behavior, which may impact the current approach to designing membranes. The results may also change the traditional view on structure-function relationships in naturally occurring biopolymers and affect future development of bio-inspired polymers. Based on recent advances in living polymerization, the results would be well posed to generate technologically important membranes. Furthermore, the planned studies will: (1) provide graduate and undergraduate research opportunities, as well as outreach opportunities through a joint effort with the California Academy for educating the public and middle school students on polymers; (2) develop new software tools for heteropolymer analysis and make them publicly available; and (3) provide the materials communities with a mechanism to overcome a barrier in starting heteropolymer-related projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:在自然界中,膜蛋白是介导分子转运以维持细胞过程的守门人。如果聚合物可以产生类似于膜蛋白的分离性能,它们可以对环境,能源,分离技术和生命科学产生非常重要的影响。例如,膜广泛用于水净化和海水淡化、二氧化碳捕获和分离、化学净化和锂电池应用。几十年来,在改进聚合物化学和自组装以更好地模拟膜蛋白的已知结构方面已经做出了重大努力,这导致了膜性能的有限进步。瓶颈是在这些高度复杂和多样的生物系统中确定关键的设计参数。通过从根本上理解插入细胞脂质类似物中的聚合物链的空间排列,并将其与分子转运相关联,该项目旨在为长期存在的问题提供见解:“复制蛋白质转运特性需要对聚合物材料进行何种水平的分子控制?如果成功,该项目可能会为生物启发聚合物带来新的设计规则,改变膜开发的途径,并导致技术相关的膜。拟议的研究是高度跨学科的,并提供了一个很好的平台,培养各级学生。 他们还将提供聚合物分析的软件工具以及多种推广机会。技术概要:对于膜蛋白,人们普遍认为,明确的蛋白质结构是同时实现高通量和选择性的必要条件。几十年来,各种多孔材料已被设计遵循这一规则,并探索选择性运输有限的成功。基于使用随机杂聚物的初步结果,所提出的研究的中心假设是,一旦杂聚物组合物是固定的,统计单体分布,而不是原子精确的聚合物结构,是控制所产生的传输特性的关键参数。该项目旨在通过以下方式来验证这一假设:(1)开发软件工具以进行随机杂聚物序列的深入分析;(2)表征脂质插入时的杂聚物链构象,以将杂聚物相行为与快速,选择性质子传输相关联;(3)探索基于杂聚物的嵌段共聚物,用于分析杂聚物链构象和传输特性,以用于未来的膜设计。 初步结果表明,非结构化的聚合物链可以在类似的水平上表现出良好的折叠蛋白质的质子运输的潜力。 计划的探索性研究将确定这种行为背后的关键设计参数,这可能会影响目前设计膜的方法。这些结果也可能改变对天然生物聚合物结构-功能关系的传统看法,并影响生物启发聚合物的未来发展。基于活性聚合的最新进展,该结果将很好地形成技术上重要的膜。 此外,计划中的研究将:(1)提供研究生和本科生的研究机会,以及通过与加州学院的共同努力,对公众和中学生进行聚合物教育的推广机会;(2)开发用于杂聚物分析的新软件工具,并向公众提供;和(3)为材料群体提供克服起始杂聚物中的障碍的机制,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-chain heteropolymers transport protons selectively and rapidly
- DOI:10.1038/s41586-019-1881-0
- 发表时间:2020-01-09
- 期刊:
- 影响因子:64.8
- 作者:Jiang, Tao;Hall, Aaron;Xu, Ting
- 通讯作者:Xu, Ting
Practical Prediction of Heteropolymer Composition and Drift
杂聚物组成和漂移的实际预测
- DOI:10.1021/acsmacrolett.8b00813
- 发表时间:2018
- 期刊:
- 影响因子:7.015
- 作者:Smith, Anton A.;Hall, Aaron;Wu, Vincent;Xu, Ting
- 通讯作者:Xu, Ting
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Xu其他文献
The latitudinal structure of recent changes in the boreal Brewer-Dobson circulation
北方布鲁尔-多布森环流近期变化的纬度结构
- DOI:
10.5194/acpd-15-24403-2015 - 发表时间:
2015-09 - 期刊:
- 影响因子:0
- 作者:
Dong Guo;Jianjun Xu;Alfred M. Powell, Jr.;Ting Xu - 通讯作者:
Ting Xu
Hierarchical visualization of geographical areal data with spatial attribute association
具有空间属性关联的地理区域数据的层次可视化
- DOI:
10.1016/j.visinf.2021.09.001 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
Haoxuan Wang;Yuna Ni;Ling Sun;Yuanyuan Chen;Ting Xu;Xiaohui Chen;Weihua Su;Zhiguang Zhou - 通讯作者:
Zhiguang Zhou
Neoadjuvant chemotherapy for primary adenocarcinomas of the urinary bladder: a single-site experience
原发性膀胱腺癌的新辅助化疗:单中心经验
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2
- 作者:
Bin Yu;Jin Zhou;Hongzhou Cai;Ting Xu;Zicheng Xu;Qing Zou;M. Gu - 通讯作者:
M. Gu
Regulatory Costs of Being Public: Evidence from Bunching Estimation
上市的监管成本:来自捆绑估计的证据
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Ewens;Kairong Xiao;Ting Xu - 通讯作者:
Ting Xu
Competition and Ownership Structure of Closely-Held Firms
封闭式控股公司的竞争和所有权结构
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
J. Beňa;Ting Xu - 通讯作者:
Ting Xu
Ting Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Xu', 18)}}的其他基金
I-Corps: Biodegradable plastics that incorporate plastic degrading enzymes
I-Corps:含有塑料降解酶的可生物降解塑料
- 批准号:
2043075 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Phase Behavior of Random Heteropolymers In Solution
无规杂聚物在溶液中的相行为
- 批准号:
2104443 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
EFRI E3P: Program plastic lifecycle by rationally design enzyme-containing plastics
EFRI E3P:通过合理设计含酶塑料来规划塑料生命周期
- 批准号:
2132025 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Simulation-Based Design of Functional Sub-nanometer Porous Membranes
DMREF:协作研究:基于仿真的功能性亚纳米多孔膜设计
- 批准号:
1235439 - 财政年份:2012
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Directed Nanoparticle Assemblies in Thin Films
薄膜中的定向纳米颗粒组件
- 批准号:
1007002 - 财政年份:2010
- 资助金额:
$ 29.81万 - 项目类别:
Continuing Grant
Washington ACS Meeting: Washington, DC; August 16-19, 2009
华盛顿 ACS 会议:华盛顿特区;
- 批准号:
0938713 - 财政年份:2009
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Self-Assembly of Diblock Copolymer-Based Supramolecule Thin Films at Two Length Scales
基于二嵌段共聚物的超分子薄膜在两种长度尺度上的自组装
- 批准号:
0805301 - 财政年份:2008
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Molecular Genetic Studies of Schizophrenia: Understanding Treatment Resistance and Outcomes to Inform Precision Psychiatry.
精神分裂症的分子遗传学研究:了解治疗耐药性和结果,为精准精神病学提供信息。
- 批准号:
MR/Y004094/1 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Research Grant
Understanding the molecular basis of checkpoint response during DNA double-strand break repair
了解 DNA 双链断裂修复过程中检查点反应的分子基础
- 批准号:
MR/Y001192/1 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Research Grant
CAREER: Understanding Dielectrophoretic Molecular Transport
职业:了解介电泳分子传输
- 批准号:
2337878 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Continuing Grant
Molecular-level Understanding Of Atmospheric Aerosols (MUOAA 2024); Corsica, France; April 1-5, 2024
对大气气溶胶的分子水平理解(MUOAA 2024);
- 批准号:
2332007 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Understanding Excimers in Molecular J- and H-aggregates: A Holstein-Peierls Approach
了解分子 J 和 H 聚集体中的准分子:荷斯坦-佩尔斯方法
- 批准号:
2221923 - 财政年份:2023
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Understanding molecular variations of cattle genome by machine learning
通过机器学习了解牛基因组的分子变异
- 批准号:
2868882 - 财政年份:2023
- 资助金额:
$ 29.81万 - 项目类别:
Studentship














{{item.name}}会员




