FMitF: Collaborative Research: Formal Methods for Machine Learning System Design

FMITF:协作研究:机器学习系统设计的形式化方法

基本信息

  • 批准号:
    1837132
  • 负责人:
  • 金额:
    $ 29.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) algorithms, fueled by massive amounts of data, are increasingly being utilized in several critical domains, including health care, finance, and transportation. Models produced by ML algorithms, for example deep neural networks, are being deployed in these domains where trustworthiness is a big concern. It has become clear that, for such domains, a high degree of assurance is required regarding the safe and correct operation of ML-based systems. This project seeks to provide a systematic framework for the design of ML systems based on formal methods. The project seeks to review and improve almost every aspect of the design flow of ML systems, including data-set design, learning algorithm selection, training of ML models, analysis and verification, and deployment. The theory and ideas generated during the project will be implemented in a new software toolkit for the design of ML systems in the context of cyber-physical systems.The project focuses on cyber-physical systems (CPS), which is a rich domain to apply formal methods principles. Moreover, the research ideas from this project can be readily applied to other contexts. A key aspect of this research is the use of a semantic approach to the design and analysis of ML systems, where the semantics of the target application and a formal specification for the full system, comprising the ML component and other components, are cornerstones of the design methodology. The project employs a range of formal methods, including satisfiability solvers, simulation-based verification, model checking, specification analysis, and synthesis to improve all stages of the ML design flow. Formal techniques are also used for the tuning of hyper-parameters and other aspects of the training process, to aid in debugging misclassifications produced by ML models, and to monitor ML systems at run time and ensure that outputs from ML models are used in a manner that ensures safe operation at all times.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在海量数据的推动下,机器学习(ML)算法正越来越多地被用于几个关键领域,包括医疗保健、金融和交通。由ML算法产生的模型,例如深度神经网络,正被部署在这些领域,其中可信度是一个大问题。很明显,对于这样的领域,基于ML的系统的安全和正确运行需要高度的保证。该项目旨在为基于形式化方法的ML系统的设计提供一个系统的框架。该项目旨在审查和改进ML系统设计流程的几乎每一个方面,包括数据集设计、学习算法选择、ML模型的训练、分析和验证以及部署。项目期间产生的理论和想法将在一个新的软件工具包中实现,该工具包用于在网络物理系统的背景下设计ML系统。该项目侧重于网络物理系统(CPS),这是一个应用形式化方法原理的丰富领域。此外,这个项目的研究思路可以很容易地应用到其他背景下。这项研究的一个关键方面是使用语义方法来设计和分析ML系统,其中目标应用程序的语义和整个系统的形式规范(包括ML组件和其他组件)是设计方法的基石。该项目采用了一系列形式化方法,包括可满足性求解器、基于模拟的验证、模型检查、规范分析和综合,以改进ML设计流程的所有阶段。正式技术还用于调整超参数和培训过程的其他方面,以帮助调试ML模型产生的错误分类,并在运行时监控ML系统,并确保ML模型的输出以确保始终安全运行的方式使用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel and Multi-objective Falsification with Scenic and VerifAI
使用 Scenic 和 VerifAI 进行并行和多目标证伪
Scenic: a language for scenario specification and data generation
  • DOI:
    10.1007/s10994-021-06120-5
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Daniel J. Fremont;Edward J. Kim;T. Dreossi;Shromona Ghosh;Xiangyu Yue;A. Sangiovanni-Vincentelli;S. Sesh
  • 通讯作者:
    Daniel J. Fremont;Edward J. Kim;T. Dreossi;Shromona Ghosh;Xiangyu Yue;A. Sangiovanni-Vincentelli;S. Sesh
Semantic Adversarial Deep Learning
  • DOI:
    10.1109/mdat.2020.2968274
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    S. Seshia;S. Jha;T. Dreossi
  • 通讯作者:
    S. Seshia;S. Jha;T. Dreossi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjit Seshia其他文献

Sanjit Seshia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjit Seshia', 18)}}的其他基金

POSE: Phase II: An Open-Source Ecosystem for Scenic
POSE:第二阶段:Scenic 的开源生态系统
  • 批准号:
    2303564
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
CPS: Breakthrough: Control Improvisation for Cyber-Physical Systems
CPS:突破:网络物理系统的即兴控制
  • 批准号:
    1646208
  • 财政年份:
    2017
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
CPS: Frontier: Collaborative Research: VeHICaL: Verified Human Interfaces, Control, and Learning for Semi-Autonomous Systems
CPS:前沿:协作研究:VeHCaL:半自主系统的经过验证的人机界面、控制和学习
  • 批准号:
    1545126
  • 财政年份:
    2016
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
I-Corps: VeriSight CPS: Enhancing the Design and Operation of Cyber-Physical Systems with Verified Insight
I-Corps:VeriSight CPS:通过经过验证的洞察力增强网络物理系统的设计和操作
  • 批准号:
    1628832
  • 财政年份:
    2016
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
STARSS: Small: Collaborative: Specification and Verification for Secure Hardware
STARSS:小型:协作:安全硬件的规范和验证
  • 批准号:
    1528108
  • 财政年份:
    2015
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Expeditions in Computer Augmented Program Engineering (ExCAPE): Harnessing Synthesis for Software Design
协作研究:计算机增强程序工程探险 (ExCAPE):利用综合进行软件设计
  • 批准号:
    1139138
  • 财政年份:
    2012
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
SHF: CSR: Small: Integrated Design and Verification of High-Confidence Interactive Systems
SHF:CSR:小型:高置信度交互系统集成设计与验证
  • 批准号:
    1116993
  • 财政年份:
    2011
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-T: Towards Behavior-Based Malware Detection
合作研究:CT-T:迈向基于行为的恶意软件检测
  • 批准号:
    0627734
  • 财政年份:
    2007
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reactive Systems through Verification and Learning
职业:通过验证和学习实现稳健的反应系统
  • 批准号:
    0644436
  • 财政年份:
    2007
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant

相似海外基金

FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
  • 批准号:
    2313411
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
  • 批准号:
    2319182
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319243
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319400
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
  • 批准号:
    2319399
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318954
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: The Phlox framework for verifying a high-performance distributed database
合作研究:FMitF:第一轨:用于验证高性能分布式数据库的 Phlox 框架
  • 批准号:
    2319167
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了