BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
基本信息
- 批准号:1837821
- 负责人:
- 金额:$ 65.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Liquid crystals are responsive materials that can be used to manufacture low-cost and highly selective chemical sensors. Liquid crystals provide a potentially scalable approach toward deploying millions of wearable chemical sensors (e.g., in mobile phones or attached to clothing) that collect high-resolution data on human exposure to toxic contaminants in the air. This information is key to understanding health-risks associated with air quality, developing industrial practices that minimize workers' exposure to hazardous environments, and detecting point sources (e.g., fabrication of explosives). Liquid crystal sensors work by amplifying events that occur at the molecular-level into an optical signal when the sensor is exposed to a chemical environment. The amplification process involves a sequence of tightly coupled phenomena spanning multiple length and time scales. This span in scales lies beyond what is currently possible to characterize, model, and predict directly from first principles. This project seeks to combine first-principles and data-driven methodologies to overcome this technical challenge. The methods developed will enable the prediction of the influence of liquid crystal design variables on the information content of optical signals and will lead to a revolutionary impact on chemical sensing technologies and on the design of functional materials. The multidisciplinary nature of this project will train a new generation of engineers in the integration of data science into the design and analysis of advanced functional materials. K-12 students and the public will be engaged through development of hands-on liquid crystal sensors that respond to model target chemicals (e.g., carbon dioxide from sodas).The project will investigate scalable machine learning techniques that enable the efficient use of large sets of experimental and first-principles simulation data to uncover and understand multi-scale phenomena that govern the performance of liquid crystals. Specifically, the project goals are to: i) Investigate the use of density functional theory and molecular dynamics simulations to identify nanoscale descriptors of the underlying spatiotemporal events occurring within and at liquid crystal interfaces (e.g., binding energies), ii) Establish feature extraction techniques to identify suitable macroscale descriptors of liquid crystal optical signals (e.g., optical response times and texture fields), and iii) Develop machine learning techniques that enable the creation of multi-scale models capable of mapping nanoscale and macroscale descriptors. These capabilities will be combined in a reinforcement learning framework that will help guide experimental data collection and identification of innovative liquid crystal system designs. The ultimate engineering goal of the project is to design LC sensors to infer exposure events involving carbon monoxide, ozone, and nitrogen and sulfur oxide.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
液晶是一种响应材料,可用于制造低成本和高选择性的化学传感器。液晶为部署数百万可穿戴化学传感器提供了一种潜在的可扩展方法(例如,在移动的电话中或附着在衣服上),其收集关于人类暴露于空气中的有毒污染物的高分辨率数据。这些信息对于了解与空气质量相关的健康风险、制定最大限度地减少工人暴露于危险环境的工业实践以及检测点源(例如,制造爆炸物)。当传感器暴露于化学环境时,液晶传感器通过将分子水平上发生的事件放大为光信号来工作。放大过程涉及一系列跨越多个长度和时间尺度的紧密耦合现象。这种尺度的跨度超出了目前可以直接从第一原理描述、建模和预测的范围。该项目旨在将联合收割机第一原理和数据驱动方法相结合,以克服这一技术挑战。所开发的方法将能够预测液晶设计变量对光信号的信息内容的影响,并将对化学传感技术和功能材料的设计产生革命性的影响。该项目的多学科性质将培养新一代工程师,将数据科学融入先进功能材料的设计和分析。K-12学生和公众将通过开发对模型目标化学品(例如,该项目将研究可扩展的机器学习技术,这些技术能够有效地使用大量的实验和第一原理模拟数据,以发现和理解控制液晶性能的多尺度现象。具体而言,该项目的目标是:i)研究密度泛函理论和分子动力学模拟的使用,以确定发生在液晶界面内和液晶界面处的潜在时空事件的纳米级描述符(例如,结合能),ii)建立特征提取技术以识别液晶光信号的合适的宏观尺度描述符(例如,光学响应时间和纹理场),以及iii)开发能够创建能够映射纳米尺度和宏观尺度描述符的多尺度模型的机器学习技术。这些功能将结合在一个强化学习框架中,这将有助于指导实验数据收集和创新液晶系统设计的识别。该项目的最终工程目标是设计LC传感器,以推断涉及一氧化碳、臭氧、氮和硫氧化物的暴露事件。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical Responses of Liquid Crystals Using 3D Convolutional Neural Networks
使用 3D 卷积神经网络分析液晶的时空光学响应来传感气体混合物
- DOI:10.1021/acssensors.2c00362
- 发表时间:2022
- 期刊:
- 影响因子:8.9
- 作者:Bao, Nanqi;Jiang, Shengli;Smith, Alexander;Schauer, James J.;Mavrikakis, Manos;Van Lehn, Reid C.;Zavala, Victor M.;Abbott, Nicholas L.
- 通讯作者:Abbott, Nicholas L.
Convolutional Network Analysis of Optical Micrographs for Liquid Crystal Sensors
- DOI:10.1021/acs.jpcc.0c01942
- 发表时间:2020-07-16
- 期刊:
- 影响因子:3.7
- 作者:Smith, Alexander D.;Abbott, Nicholas;Zavala, Victor M.
- 通讯作者:Zavala, Victor M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Abbott其他文献
Nicholas Abbott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Abbott', 18)}}的其他基金
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322899 - 财政年份:2024
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Simulations, Experiments, and Machine Learning to Understand and Design Hydrophobic Interactions
协作研究:整合模拟、实验和机器学习来理解和设计疏水相互作用
- 批准号:
2245376 - 财政年份:2023
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
2023 Complex Active and Adaptive Materials Systems: Optimizing the Synergy Between Architecture, Non-Equilibrium Processes and Materials
2023 复杂的活性和自适应材料系统:优化建筑、非平衡过程和材料之间的协同作用
- 批准号:
2246034 - 财政年份:2023
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: SHARING THE STRAIN - SYNTHETIC LIQUID CRYSTALS AS SOFT BIOMATERIALS
合作研究:共享应变——合成液晶作为软生物材料
- 批准号:
2003807 - 财政年份:2020
- 资助金额:
$ 65.65万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Accelerated Design and Deployment of Metal Alloy Surfaces for Chemoresponsive Liquid Crystals
DMREF:协作研究:化学响应液晶金属合金表面的加速设计和部署
- 批准号:
1921722 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
Collaborative Research: Manufacturing of Polymer Nanofiber Arrays on Surfaces by Chemical Vapor Deposition into Liquid Crystal Templates
合作研究:通过化学气相沉积液晶模板在表面制造聚合物纳米纤维阵列
- 批准号:
1916888 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
Optically-Driven Changes in Nanoparticle Solvation, Transport and Interaction
纳米粒子溶剂化、传输和相互作用的光驱动变化
- 批准号:
1803409 - 财政年份:2018
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Chemoresponsive Liquid Crystals Based on Metal Ion-Ligand Coordination
DMREF/合作研究:基于金属离子-配体配位的化学响应液晶
- 批准号:
1902683 - 财政年份:2018
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
2015 Liquid Crystals GRC: Liquid Crystallinity in Soft Matter at and Beyond Equilibrium
2015 液晶 GRC:软物质中的液晶性处于平衡态及超越平衡态
- 批准号:
1523320 - 财政年份:2015
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
相似国自然基金
多任务深度学习融合多模态数据术前精准预测IA期非小细胞肺癌亚肺叶切除术复发风险
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ia型超新星多波段实测特性及其机理研究
- 批准号:JCZRYB202500270
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ia型超新星及相关特殊天体研究
- 批准号:12333008
- 批准年份:2023
- 资助金额:239.00 万元
- 项目类别:重点项目
南方根结线虫Mi-UNP与Bt-Cry1Ia36互作研究及其功能分析
- 批准号:2023JJ30355
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
胞苷脱氨酶调控南方根结线虫响应Bt-Cry1Ia 胁迫的机制研究
- 批准号:2022JJ40235
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-23a~27a簇介导DNMT调控PD-L1和HLA-Ia表达促进早期肺腺癌复发的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837956 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838024 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837999 - 财政年份:2019
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
- 批准号:
1741370 - 财政年份:2018
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Understanding the Financial Market Ecosystem
BIGDATA:IA:协作研究:了解金融市场生态系统
- 批准号:
1838183 - 财政年份:2018
- 资助金额:
$ 65.65万 - 项目类别:
Standard Grant














{{item.name}}会员




