BIGDATA: F: Collaborative Research: Mining for Patterns in Graphs and High-Dimensional Data: Achieving the Limits

大数据:F:协作研究:挖掘图形和高维数据中的模式:实现极限

基本信息

  • 批准号:
    1838251
  • 负责人:
  • 金额:
    $ 73.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

While modern datasets are very large, the amount of information per variable is often relatively small. This includes datasets from genomics, social networks, and many applications in machine learning and artificial intelligence. For instance, in genomics we often track hundreds of thousands of genes, but only have a few hundred independent samples for each one. Similarly, online social networks are massive, but the structure of friendships only gives us a relatively small amount of data per individual. This kind of data is called "high-dimensional", and poses new challenges for mathematics, statistics, and computer science, especially when (as with all real data) they are noisy or incomplete. This project will identify exactly when and how it is mathematically possible to find patterns in these massive but noisy datasets, giving scientists across many fields a useful guide to how much data they need to draw reliable conclusions, and to develop new algorithms that will solve modern data science problems efficiently and optimally.Through the study of community detection, noisy graph isomorphism, and matrix/tensor factorization, this project will develop a general framework to 1) locate the information-theoretic limit below which the observation is too noisy to detect the underlying pattern, or even to tell if a pattern exists; 2) devise efficient algorithms that succeed all the way down to the lowest possible signal-to-noise ratio; 3) prove that important classes of algorithms need super-polynomial time in certain hard regimes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然现代数据集非常大,但每个变量的信息量往往相对较小。这包括来自基因组学、社交网络以及机器学习和人工智能中的许多应用的数据集。例如,在基因组学中,我们经常跟踪数十万个基因,但每个基因只有几百个独立的样本。类似地,在线社交网络是巨大的,但友谊的结构只给我们每个人相对少量的数据。这种数据被称为“高维”,并提出了新的挑战,数学,统计学和计算机科学,特别是当(与所有真实的数据),他们是嘈杂的或不完整的。该项目将准确地确定何时以及如何在这些庞大但嘈杂的数据集中找到数学上可能的模式,为许多领域的科学家提供有用的指导,以了解他们需要多少数据才能得出可靠的结论,并开发新的算法,以有效和最佳地解决现代数据科学问题。通过对社区检测,噪声图同构和矩阵/张量因子分解的研究,该项目将开发一个通用框架,以1)定位信息理论极限,低于该极限,观察太嘈杂而无法检测潜在模式,甚至无法判断模式是否存在; 2)设计有效的算法,一直成功到最低可能的信噪比; 3)证明了重要的算法类需要超该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How accurate are rebuttable presumptions of pretrial dangerousness? A natural experiment from New Mexico
审前危险性的可反驳推定有多准确?
  • DOI:
    10.1111/jels.12351
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Moore, Cristopher;Ferguson, Elise;Guerin, Paul
  • 通讯作者:
    Guerin, Paul
The Lovász Theta Function for Random Regular Graphs and Community Detection in the Hard Regime
硬体制中随机正则图和社区检测的 Lovász Theta 函数
  • DOI:
    10.1137/18m1180396
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Banks, Jess;Kleinberg, Robert;Moore, Cristopher
  • 通讯作者:
    Moore, Cristopher
The Kikuchi Hierarchy and Tensor PCA
The planted matching problem: Phase transitions and exact results
植入匹配问题:相变和精确结果
  • DOI:
    10.1214/20-aap1660
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moharrami, Mehrdad;Moore, Cristopher;Xu, Jiaming
  • 通讯作者:
    Xu, Jiaming
Improved Reconstruction of Random Geometric Graphs
改进的随机几何图重建
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dani, Varsha;Diaz, Josep;Hayes, Thomas P.;Moore, Cristopher.
  • 通讯作者:
    Moore, Cristopher.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristopher Moore其他文献

Almost All Graphs of Degree 4 are 3-colorable
几乎所有 4 阶图都是 3 色的
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Achlioptas;Cristopher Moore
  • 通讯作者:
    Cristopher Moore
Series expansion of the percolation threshold on hypercubic lattices
超立方晶格上渗流阈值的级数展开
Codes, lower bounds, and phase transitions in the symmetric rendezvous problem
对称交会问题中的代码、下界和相变
  • DOI:
    10.1002/rsa.20691
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Varsha Dani;Thomas P. Hayes;Cristopher Moore;A. Russell
  • 通讯作者:
    A. Russell
A continuous–discontinuous second‐order transition in the satisfiability of random Horn‐SAT formulas
随机 Horn-SAT 公式可满足性的连续-不连续二阶转变
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cristopher Moore;Gabriel Istrate;Demetrios D. Demopoulos;Moshe Y. Vardi
  • 通讯作者:
    Moshe Y. Vardi
Iteration, Inequalities, and Differentiability in Analog Computers
模拟计算机中的迭代、不等式和可微分
  • DOI:
    10.1006/jcom.2000.0559
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    M. Campagnolo;Cristopher Moore;José Félix Costa
  • 通讯作者:
    José Félix Costa

Cristopher Moore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristopher Moore', 18)}}的其他基金

REU Site: Computational and Mathematical Modeling of Complex Systems
REU 网站:复杂系统的计算和数学建模
  • 批准号:
    1757923
  • 财政年份:
    2018
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
Convergence QL: Ideas Lab Workshop: Practical Fully-Connected Quantum Computer Challenge (PFCQC), Santa Fe Institute, August 28 - September 1, 2017
Convergence QL:创意实验室研讨会:实用全连接量子计算机挑战赛 (PFCQC),圣达菲研究所,2017 年 8 月 28 日至 9 月 1 日
  • 批准号:
    1744320
  • 财政年份:
    2017
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
REU Site: Computational and Mathematical Modeling of Complex Systems
REU 网站:复杂系统的计算和数学建模
  • 批准号:
    1358567
  • 财政年份:
    2014
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1247081
  • 财政年份:
    2012
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: The Physics of Markov Chains: Closing the Gap Between Theory and Practice
AF:小:协作研究:马尔可夫链物理学:缩小理论与实践之间的差距
  • 批准号:
    1219117
  • 财政年份:
    2012
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Representation-theoretic techniques for pseudorandomness and lower bounds
AF:小:协作研究:伪随机性和下界的表示理论技术
  • 批准号:
    1117426
  • 财政年份:
    2011
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
Collaborative Research: EMT/QIS: Quantum Algorithms and Post-Quantum Cryptography
合作研究:EMT/QIS:量子算法和后量子密码学
  • 批准号:
    0829931
  • 财政年份:
    2008
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Continuing Grant
QnTM: Collaborative Research: The Quantum Complexity of Algebraic Problems
QnTM:协作研究:代数问题的量子复杂性
  • 批准号:
    0524613
  • 财政年份:
    2005
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Boolean Networks and Gene Expression
合作研究:布尔网络和基因表达的动力学
  • 批准号:
    0417660
  • 财政年份:
    2004
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Continuing Grant
Phase Transitions and Critical Phenomena in NP-complete Problems
NP 完全问题中的相变和临界现象
  • 批准号:
    0200909
  • 财政年份:
    2002
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 73.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了