Measuring and Improving Pedagogical Content Knowledge of Student Assistants in Introductory Physics Classes

测量和提高物理入门课学生助理的教学内容知识

基本信息

  • 批准号:
    1838339
  • 负责人:
  • 金额:
    $ 29.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

With support from the NSF Improving Undergraduate STEM Education Program: Education and Human Resources (IUSE: EHR), this project aims to serve the national interest by developing a validated assessment to improve the effectiveness of Student Assistants in introductory physics courses. Reforms in college-level introductory physics courses have promoted a shift from lecturing and factual recitation to interactive learning and conceptual understanding, which requires timely in-class guidance from an expanded teaching team. Many institutions use graduate or undergraduate Student Assistants (SAs) to assist the primary instructor. It is assumed that SAs contribute to improving student thinking and conceptual understanding, but there is limited evidence to support this assumption. In addition, if improvements do result, information about how the SA contributes to the improvement is also limited. One possibility is that asking good questions is important, since questioning is an effective instructional strategy used by instructors in an inquiry-based environment. This project will test the hypothesis that improving SAs' knowledge about questioning will improve their abilities to prompt student thinking and scaffold group interaction in inquiry-based classrooms. In this project, the researchers will develop both open-ended and multiple-choice versions of an instrument to assess SAs' knowledge of questioning. This important research is designed to contribute to a comprehensive understanding of the role that SAs' knowledge of questioning plays in college students' introductory physics learning. The products from this research will be made available to physics instructors across the country, and the instrument may be modified for use in other STEM disciplines. By monitoring the quality of SAs through the instrument, SAs can be better prepared to act as instructional leads in inquiry-based classrooms. As a result, the project has the potential to enhance college-level physics and other STEM education throughout the United States.The researchers hypothesize that SAs' Pedagogical Content Knowledge of Questioning (PCK-Q) is at the heart of SA effectiveness. This project will measure this effectiveness in three phases. In the first phase, the researchers will capture videos of SAs interacting with students during introductory physics classes. From the studying these videos, the researchers will create open-ended questions as the first version of the PCK-Q test. In the second phase, the researchers will use the responses from the first version of the PCK-Q test to develop and validate a multiple-choice version of the test. The process of developing and validating both versions of the PCK-Q test will yield qualitative data that contribute to the assessment and adjustment of SA training strategies. In the third phase of this project, the researchers will combine the data from the PCK-Q assessments and conceptual inventories of the students in their classes to build hierarchal linear models relating SAs' PCK-Q scores to improvements in their students' conceptual understanding. There will be two hierarchal linear models, one for students' conceptual understanding of physic concepts and one for student's conceptual thinking skills. The hierarchies of each level are at the student level (Level 1) and then at the class level (Level 2). This research project will benefit the field of undergraduate physics instruction by adding new insights into how SAs may best promote student learning in introductory physics classrooms. Potential long-term benefits include increased efficiency and lower costs of physics education, and adaptions for use in other STEM fields. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. This is an Engaged Student Learning proposal on the Exploration and Design Track. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF改善本科生STEM教育计划:教育和人力资源(IUSE:EHR)的支持下,该项目旨在通过开发验证评估来提高学生助理在物理入门课程中的效率,从而服务于国家利益。大学物理入门课程的改革促进了从讲授和事实背诵向互动学习和概念理解的转变,这需要扩大的教学团队及时进行课堂指导。许多机构使用研究生或本科生助理(SA)来协助主要教师。人们认为SA有助于提高学生的思维和概念理解能力,但支持这一假设的证据有限。此外,如果确实取得了改善,关于SA如何促进改善的信息也是有限的。一种可能性是,提出好的问题很重要,因为提问是教师在基于探究的环境中使用的一种有效的教学策略。这个项目将检验这样一个假设,即提高SA关于提问的知识将提高他们激发学生思维的能力,并在以探究为基础的课堂上建立小组互动。在这个项目中,研究人员将开发一种工具的开放式和多项选择版本,以评估SAS的提问知识。这项重要的研究旨在全面了解SAS的提问知识在大学生入门物理学习中所起的作用。这项研究的产品将提供给全国各地的物理教师,该仪器可能会经过改装,用于其他STEM学科。通过该仪器监测SAS的质量,SAS可以更好地准备在以探究为基础的课堂中充当教学引导者。因此,该项目有可能加强全美的大学物理和其他STEM教育。研究人员假设,SAS的教学内容提问知识(PCK-Q)是SA有效性的核心。该项目将分三个阶段衡量这一效果。在第一阶段,研究人员将拍摄SAS在物理入门课上与学生互动的视频。通过对这些视频的研究,研究人员将创建开放式问题作为PCK-Q测试的第一个版本。在第二阶段,研究人员将使用第一版PCK-Q测试的答案来开发和验证该测试的多项选择版本。制定和验证两个版本的PCK-Q测试的过程将产生有助于评估和调整SA培训战略的定性数据。在该项目的第三阶段,研究人员将结合PCK-Q评估的数据和班级学生的概念清单,建立层次线性模型,将SAS的PCK-Q分数与学生概念理解的提高联系起来。将有两个层次的线性模型,一个是学生对物理概念的概念性理解,一个是学生的概念性思维技能。每个级别的层次结构是学生级别(级别1),然后是班级级别(级别2)。这项研究项目将使本科生物理教学领域受益,为SAS如何最好地促进学生在入门物理课堂上的学习提供新的见解。潜在的长期好处包括提高物理教育的效率和降低成本,以及适用于其他STEM领域。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生的STEM教育的有效性。这是一份关于探索与设计课程的参与式学生学习建议书。通过参与的学生学习路径,该计划支持有前景的实践和工具的创建、探索和实施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianlan Wang其他文献

Dynamics of microbial community composition during degradation of silks in burial environment
埋葬环境中丝绸降解过程中微生物群落组成的动态变化
  • DOI:
    10.1016/j.scitotenv.2023.163694
  • 发表时间:
    2023-07-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Bowen Wang;Chengshuai Zhu;Yulan Hu;Bingjian Zhang;Jianlan Wang
  • 通讯作者:
    Jianlan Wang
Integrative genomic analysis reveals shared loci for reproduction and production traits in Yorkshire pigs
  • DOI:
    10.1186/s12864-025-11416-0
  • 发表时间:
    2025-03-29
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Ran Wei;Zhenyang Zhang;He Han;Jian Miao;Pengfei Yu;Hong Cheng;Wei Zhao;Xiaoliang Hou;Jianlan Wang;Yongqi He;Yan Fu;Zhen Wang;Qishan Wang;Zhe Zhang;Yuchun Pan
  • 通讯作者:
    Yuchun Pan
LP Based Integration of Computing and Science Education in Middle Schools
基于LP的中学计算与科学教育整合
Quantitative Measurement of Pre-Service Teachers’ Competency of Questioning in Scaffolding Students’ Science Learning
职前教师支架学生科学学习提问能力的定量测量
  • DOI:
    10.1007/s11165-024-10168-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jianlan Wang;Yuanhua Wang;Shahin Shawn Kashef;Yanhong Moore
  • 通讯作者:
    Yanhong Moore
Fault diagnosis in hydropower units based on chaotic Kepler optimization algorithm-enhanced BiLSTM model
  • DOI:
    10.1016/j.egyr.2024.11.008
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yujia Chen;Jianlan Wang;Weidong Chen;Fang Dao;Yun Zeng;Shunli Lv
  • 通讯作者:
    Shunli Lv

Jianlan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Continuing Grant
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Fellowship
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Continuing Grant
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
  • 批准号:
    DP240101469
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Discovery Projects
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
  • 批准号:
    IE230100103
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Early Career Industry Fellowships
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Collaborative R&D
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
  • 批准号:
    MR/Y503381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Research Grant
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
  • 批准号:
    2903811
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Studentship
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.68万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了