EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits

EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位

基本信息

  • 批准号:
    1838504
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-12-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: Over the past half century, computer chips have become smaller and faster, enabling a technological revolution that encompasses everything from cell phones to space ships. Unfortunately, further improvements in speed and miniaturization are limited by fundamental materials constraints. One solution is to move to quantum computation, a new type of computing that uses quantum science to conduct computations faster than traditional computers. Quantum computers, however, have very different material requirements than traditional computers. This project investigates a relatively new class of materials called topological insulators to see if they are suitable as a platform for quantum computation when confined to nanoscale dimensions. A partnership with the Delaware Teachers Institute lets the research team present a twelve-week seminar related to the research to local K-12 educators who create teaching modules based on the seminar content. The partnership also allows the principal investigators to recruit Research Experience for Teachers participants for hands-on summer research.Technical description: Quantum computation relies on qubits, two-level systems that can be entangled and used to perform computations. Ideally, these qubits work at room temperature, are robust to decoherence, and may be fabricated by scalable methods. Theoretical predictions indicate that topological insulators confined to nanoscale dimensions can exhibit discrete surface states that retain the topological protection of the bulk material, reducing decoherence. The objective of this proposal is to explore the existence and properties of these states, to assess whether their inherent topological protection makes them viable as room-temperature qubits. Topological insulator films are grown using molecular beam epitaxy and patterned into nanoparticles using standard lithographic techniques before being characterized by optical spectroscopy. The aim is to understand how the discrete state energies vary with particle size and Fermi energy position. The goal of the project is to have detailed measurements of the optical properties of topological insulator nanoparticles, to assess their viability as an entirely new platform for topologically-protected room-temperature qubits. A partnership between the principal investigators and the Delaware Teachers Institute (DTI) allows the principal investigators to present a twelve-week seminar to local K-12 teachers on the optical properties of materials. The teachers then create units on this topic to disseminate through DTI channels, as well as for use in their own classrooms. Research Experience for Teachers supplements allow local teachers to take part in hands-on research on this project in the summers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:在过去的半个世纪里,计算机芯片变得越来越小,速度越来越快,这促成了一场技术革命,涵盖了从手机到宇宙飞船的一切。不幸的是,速度和小型化的进一步改进受到基本材料约束的限制。一种解决方案是转向量子计算,这是一种新型的计算,使用量子科学进行计算的速度比传统计算机更快。然而,量子计算机对材料的要求与传统计算机有很大不同。该项目研究了一类相对较新的称为拓扑绝缘体的材料,看看它们是否适合作为量子计算的平台,当局限于纳米尺度时。与特拉华州教师研究所的合作伙伴关系,使研究小组提出了一个为期12周的研讨会与研究有关的当地K-12教育工作者谁创建教学模块的基础上研讨会的内容。该合作伙伴关系还允许主要研究人员招募研究经验教师参与者进行实践夏季研究。技术描述:量子计算依赖于量子比特,可以纠缠并用于执行计算的两级系统。理想情况下,这些量子位在室温下工作,对退相干具有鲁棒性,并且可以通过可扩展的方法制造。理论预测表明,局限于纳米尺度的拓扑绝缘体可以表现出离散的表面状态,保留了本体材料的拓扑保护,减少退相干。这项提议的目的是探索这些状态的存在和性质,评估它们固有的拓扑保护是否使它们成为室温量子比特。拓扑绝缘体膜使用分子束外延生长,并使用标准光刻技术图案化成纳米颗粒,然后通过光谱学进行表征。目的是了解离散态能量如何随粒子尺寸和费米能位置而变化。该项目的目标是详细测量拓扑绝缘体纳米粒子的光学特性,以评估它们作为拓扑保护室温量子位的全新平台的可行性。主要研究人员和特拉华州教师研究所(DTI)之间的合作伙伴关系允许主要研究人员向当地K-12教师提供为期12周的材料光学特性研讨会。然后,教师们就这一主题创建单元,通过贸易和工业部的渠道传播,并在自己的课堂上使用。教师研究经验补充允许当地教师在夏季参与该项目的实践研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication of topological insulator nanostructures
  • DOI:
    10.1116/6.0000341
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mambakkam, Sivakumar Vishnuvardhan;Law, Stephanie
  • 通讯作者:
    Law, Stephanie
Spectroscopy of van der Waals nanomaterials: Opportunities and challenges
  • DOI:
    10.1063/5.0172132
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    S. V. Mambakkam;Stephanie Law
  • 通讯作者:
    S. V. Mambakkam;Stephanie Law
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Law其他文献

The explanation dialogues: an expert focus study to understand requirements towards explanations within the GDPR
解释性对话:一项专家焦点研究,以了解对《通用数据保护条例》内解释的要求
  • DOI:
    10.1007/s10506-024-09430-w
  • 发表时间:
    2025-01-13
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Laura State;Alejandra Bringas Colmenarejo;Andrea Beretta;Salvatore Ruggieri;Franco Turini;Stephanie Law
  • 通讯作者:
    Stephanie Law
Comparing cost-effectiveness of standardized TB treatments given varying drug-resistance
比较不同耐药情况下标准化结核病治疗的成本效益
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephanie Law;A. Benedetti;O. Oxlade;K. Schwartzman;D. Menzies
  • 通讯作者:
    D. Menzies
Malnutrition screening in patients admitted to hospital with an exacerbation of chronic obstructive pulmonary disease and its association with patient outcomes
慢性阻塞性肺疾病恶化入院患者的营养不良筛查及其与患者预后的关系
  • DOI:
    10.1080/21548331.2016.1224007
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephanie Law;Praneel Kumar;S. Woods;K. Sriram
  • 通讯作者:
    K. Sriram

Stephanie Law的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Law', 18)}}的其他基金

RII Track-4: Probing the Electronic States of Quantum-Confined Topological Insulator Nanostructures
RII Track-4:探测量子限制拓扑绝缘体纳米结构的电子态
  • 批准号:
    1928819
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Atomic-Scale Hybrids, Tuning the IR Dielectric Function through Superlattice Design
合作研究:原子级混合体,通过超晶格设计调节红外介电函数
  • 批准号:
    1904760
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
OP: Investigating High-K Modes in Metamaterial Structures
OP:研究超材料结构中的高 K 模式
  • 批准号:
    1606673
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
  • 批准号:
    1838513
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
  • 批准号:
    1836989
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Manipulating polariton entanglement for room-temperature quantum logic
EAGER:实现量子飞跃:操纵室温量子逻辑的极化子纠缠
  • 批准号:
    1838276
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Towards Room Temperature Quantum Logic Using Moire Heterostructure Single Quantum Emitters Coupled to Plasmonic Waveguides
EAGER:实现量子飞跃:使用莫尔异质结构单量子发射器耦合到等离子体波导实现室温量子逻辑
  • 批准号:
    1838378
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room-temperature Photon Blockade and Quantum Gates Using Quantum Dots in 2D Materials
EAGER:实现量子飞跃:在 2D 材料中使用量子点的室温光子封锁和量子门
  • 批准号:
    1838380
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room temperature Quantum Logic operations Enabled by Quantum Emitter Arrays in 2D artificial Superlattices
EAGER:实现量子飞跃:二维人造超晶格中的量子发射器阵列实现室温量子逻辑运算
  • 批准号:
    1838443
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Nanoengineering of Two-Dimensional and Twisted Ferromagnets Towards Room-Temperature Quantum Logic
EAGER:实现量子飞跃:二维和扭曲铁磁体纳米工程迈向室温量子逻辑
  • 批准号:
    1838456
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Scalable, Controllable and Tunable Room- Temperature Quantum Emitters in Mono-layer WSe2
EAGER:实现量子飞跃:单层 WSe2 中的可扩展、可控和可调谐室温量子发射器
  • 批准号:
    1838403
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了