EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic

EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学

基本信息

  • 批准号:
    1836989
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: As the limits of electrical circuitry are approached, new paradigms are needed for future generations of faster miniature information processing devices that require less energy. Presently, nearly all existing electronics rely on the movement of electric charges in the form of electrons. Electrons also possess a property known as spin, that gives them their magnetic properties. Periodic undulations of these magnetic properties result in waves known as magnons. Magnonics is a new paradigm which uses magnons for processing and storing information, albeit with reduced energy losses and greater speeds compared to traditional electronics. This project focuses on the study of physical mechanisms that enable magnonics in organic (i.e. carbon-based) magnetic materials. In particular, the control, manipulation, transport and the very sensitive detection of magnons in organic magnetic thin films is investigated. Magnonic devices based on such magnets are engineered, fabricated and tested using electrical, magnetic and optical measurements. In addition, the integration of the large arsenal of experimental efforts serves to efficiently educate graduate and undergraduate students who are involved in this highly interdisciplinary research project at the interface between Physics and Chemistry. Furthermore, through outreach conducted in the course of this project, high school and middle school students learn about the career opportunities and technological potential of Physics, Chemistry and the Natural Sciences in general.Technical description: Magnons are S = 1 quasi-particles that obey Bose-Einstein statistics and lack movement of a particle, yet their coupling to electron spins can be utilized for information transport, processing and storage. The technologies resulting from this, namely Magnonics, are anticipated to form a new paradigm for future generations of faster (GHz - THz frequencies) and reduced energy dissipation of miniature information processing devices. The goal of this project is to enhance the understanding of magnons in organic-based molecular materials. The latter are hypothesized to be superior to traditional magnetic materials due to their long magnon mean free paths that enable magnonics to be technologically viable at room temperature and close to the magnetic ordering temperature. The room temperature V(TCNE)x (TCNE = tetracyano-ethylene) magnet serves as a magnonic gain medium for studying whispering gallery magnon modes in micro-resonators, for further implementation as highly coherent quantum systems. The team focuses on film growth and fabrication of microcavities for room-temperature quantum logic, using parity-time symmetry. This project utilizes the University of Utah's large arsenal of experimental capabilities, including chemical synthesis, polymer and small molecule deposition, magneto-transport, electrically-detected ferromagnetic resonance, magnon-related spin-pumping, inverse spin-Hall effect spectroscopy, as well as device fabrication, processing and testing. Furthermore, the broad impact of an entirely new class of electronics enables educating a cohort of graduate and undergraduate students who are involved in the execution of this project, as well as outreach to local high school and middle school communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:随着电路的极限越来越近,需要新的范例来实现未来几代更快的微型信息处理设备,这些设备需要更少的能量。目前,几乎所有现有的电子设备都依赖于电子形式的电荷运动。电子还具有一种被称为自旋的特性,这使它们具有磁性。这些磁性的周期性波动产生了被称为磁振子的波。磁振学是一种新的范例,它使用磁振子来处理和存储信息,尽管与传统电子产品相比,它具有更少的能量损失和更快的速度。该项目侧重于研究使有机(即碳基)磁性材料中的磁振学成为可能的物理机制。特别地,研究了有机磁性薄膜中磁振子的控制、操纵、输运和非常灵敏的检测。基于这种磁体的磁振子器件是通过电、磁和光学测量来设计、制造和测试的。此外,大量实验成果的整合有助于有效地教育研究生和本科生,他们参与了这个物理和化学之间高度跨学科的研究项目。此外,通过在该项目过程中开展的外展活动,高中生和中学生了解了物理、化学和自然科学的就业机会和技术潜力。技术描述:磁振子是S = 1准粒子,服从玻色-爱因斯坦统计,缺乏粒子的运动,但它们与电子自旋的耦合可以用于信息传输、处理和存储。由此产生的技术,即磁振学,预计将为未来几代更快(GHz - THz频率)和更低能量消耗的微型信息处理设备形成新的范例。本计划的目标是增进对有机基分子材料中的磁振子的了解。后者被认为优于传统磁性材料,因为它们具有长磁振子平均自由路径,使得磁振学在室温和接近磁有序温度的情况下在技术上可行。室温V(TCNE)x (TCNE =四氰乙烯)磁体作为磁增益介质,用于研究微谐振器中的窃窃廊磁振子模式,进一步实现高相干量子系统。该团队利用奇偶时间对称性,专注于薄膜生长和室温量子逻辑微腔的制造。该项目利用犹他大学的大量实验能力,包括化学合成、聚合物和小分子沉积、磁输运、电检测铁磁共振、磁non相关的自旋泵、逆自旋霍尔效应光谱,以及设备制造、加工和测试。此外,一个全新的电子类的广泛影响,可以教育一批参与该项目执行的研究生和本科生,并扩展到当地的高中和初中社区。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reply to “Comment on ‘Optical detection of transverse spin-Seebeck effect in permalloy film using Sagnac interferometer microscopy’ ”
回复—评论—使用萨格纳克干涉仪显微镜光学检测坡莫合金薄膜中的横向自旋塞贝克效应—
  • DOI:
    10.1103/physrevb.99.106402
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    McLaughlin, R.;Sun, D.;Zhang, C.;Groesbeck, M.;Vardeny, Z. Valy
  • 通讯作者:
    Vardeny, Z. Valy
Observation of exceptional points in magnonic parity-time symmetry devices
  • DOI:
    10.1126/sciadv.aax9144
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Liu, Haoliang;Sun, Dali;Vardeny, Z. Valy
  • 通讯作者:
    Vardeny, Z. Valy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zeev Valy Vardeny其他文献

Control of light, spin and charge with chiral metal halide semiconductors
用手性金属卤化物半导体控制光、自旋和电荷
  • DOI:
    10.1038/s41570-022-00399-1
  • 发表时间:
    2022-06-27
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Haipeng Lu;Zeev Valy Vardeny;Matthew C. Beard
  • 通讯作者:
    Matthew C. Beard

Zeev Valy Vardeny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zeev Valy Vardeny', 18)}}的其他基金

Magneto-optical quantum excitations and spintronics effects in chiral (CH)x
手性 (CH)x 中的磁光量子激发和自旋电子学效应
  • 批准号:
    2206653
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Spin Polarization Spectroscopy in Organic Semiconductors
有机半导体中的自旋偏振光谱
  • 批准号:
    1701427
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Carrier transport in organometal halide perovskite devices
合作研究:有机金属卤化物钙钛矿器件中的载流子传输
  • 批准号:
    1607516
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Spin Response in Organic Semiconductors with Tuned Spin-Orbit Coupling
利用调谐自旋轨道耦合研究有机半导体中的自旋响应
  • 批准号:
    1404634
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FRG: Spin Response in Organic Semiconductors with Tuned Hyperfine Interaction
FRG:具有调谐超精细相互作用的有机半导体中的自旋响应
  • 批准号:
    1104495
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Optical, Electrical and Magnetic Studies of pi-Conjugated Polymer/Organic Acceptor Blends for Photovoltaic Applications
用于光伏应用的 π 共轭聚合物/有机受体混合物的光学、电学和磁学研究
  • 批准号:
    0803325
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Molecular Electronics and Spintronics in Self-Assembled Monolayer Devices
NER:自组装单层器件中的分子电子学和自旋电子学
  • 批准号:
    0507952
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FRG: Study of Pi-Conjugated Organic Semiconductors with Tailored Spin-Orbit Coupling
FRG:利用定制自旋轨道耦合研究 Pi 共轭有机半导体
  • 批准号:
    0503172
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FRG: Excitation Dynamics and Laser Action in Systems of Pi-Conjugated Materials
FRG:Pi 共轭材料系统中的激发动力学和激光作用
  • 批准号:
    0202790
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Exciton Dynamics and Laser Action in Conducting Polymers
导电聚合物中的激子动力学和激光作用
  • 批准号:
    9732820
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
  • 批准号:
    1838513
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits
EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位
  • 批准号:
    1838504
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Manipulating polariton entanglement for room-temperature quantum logic
EAGER:实现量子飞跃:操纵室温量子逻辑的极化子纠缠
  • 批准号:
    1838276
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Towards Room Temperature Quantum Logic Using Moire Heterostructure Single Quantum Emitters Coupled to Plasmonic Waveguides
EAGER:实现量子飞跃:使用莫尔异质结构单量子发射器耦合到等离子体波导实现室温量子逻辑
  • 批准号:
    1838378
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room-temperature Photon Blockade and Quantum Gates Using Quantum Dots in 2D Materials
EAGER:实现量子飞跃:在 2D 材料中使用量子点的室温光子封锁和量子门
  • 批准号:
    1838380
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room temperature Quantum Logic operations Enabled by Quantum Emitter Arrays in 2D artificial Superlattices
EAGER:实现量子飞跃:二维人造超晶格中的量子发射器阵列实现室温量子逻辑运算
  • 批准号:
    1838443
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Nanoengineering of Two-Dimensional and Twisted Ferromagnets Towards Room-Temperature Quantum Logic
EAGER:实现量子飞跃:二维和扭曲铁磁体纳米工程迈向室温量子逻辑
  • 批准号:
    1838456
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Scalable, Controllable and Tunable Room- Temperature Quantum Emitters in Mono-layer WSe2
EAGER:实现量子飞跃:单层 WSe2 中的可扩展、可控和可调谐室温量子发射器
  • 批准号:
    1838403
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了