TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
基本信息
- 批准号:1839338
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the factors that determine regional climate variability and change is a challenge with important implications for the economy, security, and environmental sustainability of many regions around the globe. Our understanding and modeling of the large-scale dynamics of the Earth climate system and associated regional-scale climate variability significantly affects our ability to predict and mitigate climatic extremes and hazards. Earth observations and climate model outputs are witnessing an unprecedented increase in data volume, creating new opportunities to advance climate science but also leading to new data science challenges that must be addressed using tools from mathematics, statistics, and computer science. This project focuses on two central challenges at the heart of modern data-enabled climate science: (1) Increasing the predictive capacity of subseasonal forecasts by discovering and quantifying the sources of (un)predictability, including known and emergent climate modes and their interactions and non-stationarities; and (2) Understanding and quantifying the intricate space-time dynamics of the climate system to provide guidance for climate model assessment and regional forecasting. This project brings together an interdisciplinary team that combines expertise in both hydroclimate science and statistical machine learning to create new platforms for climate diagnostics and prognostics. The broader impacts of an enhanced knowledge of the climate system and robust and accurate seasonal forecasts have wide-ranging implications for society as a whole. For example, better seasonal forecasts will allow water resource managers to make sustainable decisions for water allocation.This TRIPODS+CLIMATE project will develop novel machine learning and network estimation methodologies for analyzing the climate system over a range of space and time scales, to understand climate modes of variability and change and to explore their predictive ability for regional hydroclimatology. The two main objectives of this project are the following. Objective 1: Develop novel classification and regression tools that account for highly-correlated features or covariates, nonlinear interaction terms in high-dimensional settings, and nonstationarity in climate observations. These tools will be used to improve seasonal-to-subseasonal forecasts of regional precipitation using multidimensional climate modes and feature vectors in the presence of evolving dynamics and nonstationarities. Objective 2: Develop network identification methods that leverage recent advances in machine learning and statistics and that can account for the nonstationarity and limited timeframe of climate data. The network representation will be used to analyze the structure and dynamics of the learned dependencies to contextualize and interpret them physically, and to quantify changing patterns in climate modes and their regional predictive capacity. Emphasis will be placed on the western Pacific dynamics where an interhemispheric bi-directional connection has recently been discovered, promising earlier and more accurate seasonal-to-subseasonal forecasts in the southwestern US and other parts of the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解决定区域气候变率和变化的因素是一项挑战,对全球许多地区的经济、安全和环境可持续性具有重要意义。我们对地球气候系统大尺度动力学的理解和建模以及相关的区域尺度气候变率显著影响着我们预测和减轻极端气候和灾害的能力。地球观测和气候模型输出的数据量正在出现前所未有的增长,这为推进气候科学创造了新的机会,但也带来了新的数据科学挑战,必须利用数学、统计学和计算机科学的工具来解决这些挑战。本项目重点关注现代数据气候科学的两个核心挑战:(1)通过发现和量化(非)可预测性的来源,包括已知和紧急气候模式及其相互作用和非平稳性,提高亚季节预报的预测能力;(2)认识和量化气候系统复杂的时空动态,为气候模式评估和区域预报提供指导。该项目汇集了一个跨学科团队,结合了水文气候科学和统计机器学习方面的专业知识,为气候诊断和预测创造了新的平台。增强对气候系统的认识以及强劲而准确的季节预报所产生的更广泛的影响对整个社会具有广泛的影响。例如,更好的季节预报将使水资源管理者能够做出可持续的水资源分配决策。这个TRIPODS+CLIMATE项目将开发新的机器学习和网络估计方法,用于分析一系列空间和时间尺度上的气候系统,以了解变率和变化的气候模式,并探索其对区域水文气候学的预测能力。该项目的两个主要目标如下。目标1:开发新的分类和回归工具,以解释高度相关的特征或协变量、高维环境中的非线性相互作用项和气候观测中的非平稳性。这些工具将用于在不断变化的动力和非平稳性存在的情况下,利用多维气候模式和特征向量改进区域降水的季节到亚季节预报。目标2:开发网络识别方法,利用机器学习和统计学的最新进展,并可以解释气候数据的非平稳性和有限的时间框架。网络表示将用于分析学习依赖关系的结构和动态,以将它们置于环境中并进行物理解释,并量化气候模式的变化模式及其区域预测能力。重点将放在西太平洋的动力上,在那里最近发现了半球间的双向联系,有望在美国西南部和世界其他地区进行更早和更准确的季节到亚季节预报。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph-Guided Regularization for Improved Seasonal Forecasting
用于改进季节性预测的图形引导正则化
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Stevens A., R. Willett
- 通讯作者:Stevens A., R. Willett
Complexity of a projected Newton-CG method for optimization with bounds
- DOI:10.1007/s10107-023-02000-z
- 发表时间:2021-03
- 期刊:
- 影响因子:2.7
- 作者:Yue Xie;Stephen J. Wright
- 通讯作者:Yue Xie;Stephen J. Wright
Data-Driven Cloud Clustering via a Rotationally Invariant Autoencoder
- DOI:10.1109/tgrs.2021.3098008
- 发表时间:2021-07-26
- 期刊:
- 影响因子:8.2
- 作者:Kurihana, Takuya;Moyer, Elisabeth;Foster, Ian
- 通讯作者:Foster, Ian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Willett其他文献
Multi-Frequency Progressive Refinement for Learned Inverse Scattering
学习逆散射的多频率渐进细化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Owen Melia;Olivia Tsang;Vasileios Charisopoulos;Y. Khoo;Jeremy Hoskins;Rebecca Willett - 通讯作者:
Rebecca Willett
Stability via resampling: statistical problems beyond the real line
通过重采样实现稳定性:超出实线的统计问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jake A. Soloff;Rina Foygel Barber;Rebecca Willett - 通讯作者:
Rebecca Willett
SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3
最年轻的银河系超新星遗迹 G1.9 0.3 中的超新星喷射物
- DOI:
10.1088/2041-8205/771/1/l9 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Borkowski;S. Reynolds;U. Hwang;D. Green;R. Petre;Kalyani Krishnamurthy;Rebecca Willett - 通讯作者:
Rebecca Willett
RADIOACTIVE SCANDIUM IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3
最年轻的银河超新星遗迹 G1.9 0.3 中的放射性钪
- DOI:
10.1088/2041-8205/724/2/l161 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
K. Borkowski;S. Reynolds;D. Green;U. Hwang;R. Petre;Kalyani Krishnamurthy;Rebecca Willett - 通讯作者:
Rebecca Willett
Rebecca Willett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Willett', 18)}}的其他基金
NSF Student Travel Grant for 2022 UChicago AI+Science Summer School (UChicago AI+Sci SS)
2022 年芝加哥大学人工智能科学暑期学校 (UChicago AI Sci SS) NSF 学生旅费补助
- 批准号:
2229623 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023109 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934637 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Automatic, Adaptive Detection and Description of Change in Time-Lapse Imagery
ATD:协作研究:延时图像变化的自动、自适应检测和描述
- 批准号:
1925101 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
- 批准号:
1930049 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
- 批准号:
1319927 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Data-Starved Inference on Point Processes
职业:点过程上的数据匮乏推理
- 批准号:
0643947 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
ReS2-Cu2S@(Zr,Ti)O2-NTs 异质界面构筑及高
效稳定光电催化 CO2 转化合成乙醇的研究
- 批准号:Y24B030069
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
辉钼矿结构MoS2-ReS2固溶体的热力学性质研究及其对铼富集成矿的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于各向异性ReS2的1T/2H二维范德瓦尔斯异质结的可控构筑及其光电性能研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于熔融盐法可控构建多功能双位点TiO2/Al-ReS2及其光催化降解全氟化合物机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
n-HA/Res/CS微球在骨质疏松性骨折中的作用机制研究
- 批准号:82172442
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于BP/ReS2异质结双损耗调制的2μm高峰值功率可调频锁模激光特性研究
- 批准号:62005094
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
RES2(Polygalacturonase)参与四分体果胶壁降解影响温敏不育系育性转变机制的研究
- 批准号:32000371
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高体积比容量ReS2/MXene异质结构电极材料的构筑与储钾机制
- 批准号:21978159
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
二维MoS2/ReS2的合金及异质结构
- 批准号:51872012
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
糖基化BSA-RES纳米乳液稳定性及消化吸收特性研究
- 批准号:31871795
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
- 批准号:
2232232 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
- 批准号:
2232237 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TRIPODS+X: RES: Collaborative Research: Scaling Up Descriptive Epidemiology and Metabolic Network Models via Faster Sampling
TRIPODS X:RES:协作研究:通过更快的采样扩大描述性流行病学和代谢网络模型
- 批准号:
1839116 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TRIPODS+X: RES: Collaborative Research: Scaling Up Descriptive Epidemiology and Metabolic Network Models via Faster Sampling
TRIPODS X:RES:协作研究:通过更快的采样扩大描述性流行病学和代谢网络模型
- 批准号:
1839323 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ea SM-3: Collaborative Res: Surface-induced Forcing and Decadal Variability and Change of the East Asian Climate, Surface Hydrology & Agriculture-A Modeling and Data Approach
Ea SM-3:协作研究:地表诱发强迫和年代际变率以及东亚气候、地表水文学的变化
- 批准号:
1419520 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ea SM-3: Collaborative Res: Surface-induced Forcing and Decadal Variability and Change of the East Asian Climate, Surface Hydrology & Agriculture-A Modeling and Data Approach
Ea SM-3:协作研究:地表诱发强迫和年代际变率以及东亚气候、地表水文学的变化
- 批准号:
1419526 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GSE/RES Collaborative proposal: How parents and their elementary school-age children solve science problems together: The role of gender and ethnicity
GSE/RES 合作提案:家长和小学适龄儿童如何共同解决科学问题:性别和种族的作用
- 批准号:
1231872 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
GSE/RES Collaborative proposal: How parents and their elementary school-age children solve science problems together: The role of gender and ethnicity
GSE/RES 合作提案:家长和小学适龄儿童如何共同解决科学问题:性别和种族的作用
- 批准号:
1232052 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
GSE/RES- Collaborative Research - Practical Logic of STEM Career Choice: A Critical Interpretive approach to profiling IT Career Pathways of African American Males at HBCUs
GSE/RES- 合作研究 - STEM 职业选择的实用逻辑:一种批判性解释方法来分析 HBCU 中非裔美国男性的 IT 职业道路
- 批准号:
1232344 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GSE/RES Collaborative Research: Recruitment and Retention of Women in Geosciences: An Investigation of Individual and Environmental Factors
GSE/RES 合作研究:地球科学领域女性的招聘和保留:对个人和环境因素的调查
- 批准号:
1136233 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant