ATD: Collaborative Research: Automatic, Adaptive Detection and Description of Change in Time-Lapse Imagery
ATD:协作研究:延时图像变化的自动、自适应检测和描述
基本信息
- 批准号:1925101
- 负责人:
- 金额:$ 25.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will provide algorithms for automatic, adaptive detection and description of changes in time-lapse imagery - a series of images obtained from the same scene over a long time frame. We wish to identify when there are "significant" changes in the scene, and provide a text description of those changes in natural English, where a human analyst provides feedback to determine what kinds of changes are important (e.g., a building being built, deforestation) or unimportant (e.g., seasonal changes). We will in particular focus on satellite or aerial imagery, for which data sets commonly used to train image recognition systems are inadequate. This fundamental research has the potential to transform many application domains, including surveillance, autonomous robotics, monitoring of civil infrastructure, high-throughput microscopy, and climate science, in all of which change is a common and significant occurrence. Our work on novel formulations of change description will also impact on core areas of computer vision and natural language processing, where many similar problems arise. The project will involve graduate students training and postdoctoral associate mentoring.Detecting change is one of the fundamental abilities for an agent perceiving and interacting with the world. Describing changes in natural language is key to making human interaction with such an agent efficient, accurate and transparent. Our work will advance both the theoretical understanding of these goals and the practical methods for implementing them. Specifically, we will address the above challenges for developing novel mathematical frameworks for localizing gradual changes and describing those changes in natural language; we will develop theoretical and practical means to analyze and overcome corruption in observed imagery; and we will develop novel theory and methods for leveraging human feedback. This work will yield fundamental advances in the fields of change point detection and localization, image reconstruction using deep neural networks and limited training data, and multi-armed bandit methodology for adapting to human feedback.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将提供自动、自适应检测和描述延时图像变化的算法,延时图像是在一个长时间框架内从同一场景获得的一系列图像。我们希望识别场景中何时存在“显著”变化,并以自然英语提供这些变化的文本描述,其中人类分析师提供反馈以确定哪些类型的变化是重要的(例如,正在建造的建筑物、森林砍伐)或不重要的(例如,季节变化)。我们将特别关注卫星或航空图像,通常用于训练图像识别系统的数据集是不够的。这项基础研究有可能改变许多应用领域,包括监控、自主机器人、民用基础设施监测、高通量显微镜和气候科学,在所有这些领域,变化都是常见且重要的事件。我们在变化描述的新公式方面的工作也将影响计算机视觉和自然语言处理的核心领域,这些领域出现了许多类似的问题。该项目将包括研究生培训和博士后助理指导。检测变化是智能体感知和与世界互动的基本能力之一。用自然语言描述变化是使人类与这种代理进行高效、准确和透明交互的关键。我们的工作将促进对这些目标的理论理解和实现这些目标的实际方法。具体来说,我们将解决上述挑战,开发新的数学框架,用于本地化逐渐变化并用自然语言描述这些变化;我们将开发理论和实践手段来分析和克服观察到的图像中的腐败;我们将开发新的理论和方法来利用人类反馈。这项工作将在变点检测和定位、使用深度神经网络和有限训练数据进行图像重建以及适应人类反馈的多臂强盗方法学等领域取得根本性进展。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction in the Presence of Response-Dependent Missing Labels
存在依赖于响应的缺失标签时的预测
- DOI:10.1109/ssp49050.2021.9513750
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Song, Hyebin;Raskutti, Garvesh;Willett, Rebecca
- 通讯作者:Willett, Rebecca
Learning to Solve Linear Inverse Problems in Imaging with Neumann Networks
学习使用诺伊曼网络解决成像中的线性逆问题
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ongie, Greg;Gilton, Davis;Willett, Rebecca
- 通讯作者:Willett, Rebecca
Detecting Abrupt Changes in High-Dimensional Self-Exciting Poisson Processes
检测高维自激泊松过程中的突变
- DOI:10.5705/ss.202021.0221
- 发表时间:2024
- 期刊:
- 影响因子:1.4
- 作者:Wang, Daren;Yu, Yi;Willett, Rebecca
- 通讯作者:Willett, Rebecca
Statistically and Computationally Efficient Change Point Localization in Regression Settings
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Daren Wang;Kevin Lin;R. Willett
- 通讯作者:Daren Wang;Kevin Lin;R. Willett
Localizing Changes in High-Dimensional Regression Models
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:A. Rinaldo;Daren Wang;Qin Wen;R. Willett;Yi Yu
- 通讯作者:A. Rinaldo;Daren Wang;Qin Wen;R. Willett;Yi Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Willett其他文献
Multi-Frequency Progressive Refinement for Learned Inverse Scattering
学习逆散射的多频率渐进细化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Owen Melia;Olivia Tsang;Vasileios Charisopoulos;Y. Khoo;Jeremy Hoskins;Rebecca Willett - 通讯作者:
Rebecca Willett
Stability via resampling: statistical problems beyond the real line
通过重采样实现稳定性:超出实线的统计问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jake A. Soloff;Rina Foygel Barber;Rebecca Willett - 通讯作者:
Rebecca Willett
SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3
最年轻的银河系超新星遗迹 G1.9 0.3 中的超新星喷射物
- DOI:
10.1088/2041-8205/771/1/l9 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Borkowski;S. Reynolds;U. Hwang;D. Green;R. Petre;Kalyani Krishnamurthy;Rebecca Willett - 通讯作者:
Rebecca Willett
RADIOACTIVE SCANDIUM IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3
最年轻的银河超新星遗迹 G1.9 0.3 中的放射性钪
- DOI:
10.1088/2041-8205/724/2/l161 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
K. Borkowski;S. Reynolds;D. Green;U. Hwang;R. Petre;Kalyani Krishnamurthy;Rebecca Willett - 通讯作者:
Rebecca Willett
Rebecca Willett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Willett', 18)}}的其他基金
NSF Student Travel Grant for 2022 UChicago AI+Science Summer School (UChicago AI+Sci SS)
2022 年芝加哥大学人工智能科学暑期学校 (UChicago AI Sci SS) NSF 学生旅费补助
- 批准号:
2229623 - 财政年份:2022
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023109 - 财政年份:2020
- 资助金额:
$ 25.57万 - 项目类别:
Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934637 - 财政年份:2019
- 资助金额:
$ 25.57万 - 项目类别:
Continuing Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
- 批准号:
1839338 - 财政年份:2018
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
- 批准号:
1930049 - 财政年份:2018
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
- 批准号:
1319927 - 财政年份:2013
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
CAREER: Data-Starved Inference on Point Processes
职业:点过程上的数据匮乏推理
- 批准号:
0643947 - 财政年份:2007
- 资助金额:
$ 25.57万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant