RTG: Number Theory and Representation Theory at the University of Michigan
RTG:密歇根大学数论和表示论
基本信息
- 批准号:1840234
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support a Research Training Group in Number theory and Representation theory at the University of Michigan. The RTG will build a research group around the faculty in these areas, supporting postdocs, graduate students and undergraduates. A team of eight faculty members (Bhargav Bhatt, Stephen DeBacker, Wei Ho, Tasho Kaletha, Jeffrey Lagarias, Kartik Prasanna, Andrew Snowden, and Michael Zieve) will oversee the project. The project will support a number of initiatives to broaden participation in these areas of mathematics, and to encourage new modes of collaboration. These initiatives include among others (i) the Teams of Three collaborations, in which vertically integrated teams of at least three participants work jointly on research projects; (ii) a series of Undergraduate Computational Initiative Workshops, through which undergraduates will be introduced to research in mathematics by working on computational problems that involve a mix of theory and coding; (iii) a series of summer workshops with varying formats that will involve and benefit young mathematicians from across the country; (iv) a more traditional REU program; and (v) a "Number theory day" involving other universities in Michigan. There will be several new recruitment initiatives that will include an expansion of a bridge Masters program and the development of undergraduate classes that will popularize the mathematics in this proposal and make it more accessible to diverse audiences within the undergraduate population at Michigan. Number theory and Representation theory are both central areas in mathematics, and are highly interconnected. The connection between these areas is most visible in the Langlands program, which predicts relations between the roots of polynomials over number fields and the representations of algebraic groups; this connection is responsible for some of the most striking achievements in mathematics, such as the proof of Fermat's last theorem. Training the next generation of mathematicians in these areas is of vital importance to the country both because of the central role that they play in mathematics and because of important practical applications of these areas to topics such as cryptography, cryptocurrencies and blockchain technology. In recent years, there have been major developments in the field, including the theory of perfectoid spaces, the classification of automorphic representations, the geometry of numbers and arithmetic invariant theory, and the arithmetic theory of algebraic cycles. The PIs on this grant together have expertise covering all of these recent developments and will pass this along by training postdocs, graduate students and undergraduates, with the goal of increasing the number of US citizens pursuing careers in these areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持密歇根大学数论和表示论的研究培训小组。RTG将围绕这些领域的教师建立一个研究小组,支持博士后,研究生和本科生。一个由八名教师组成的团队(Bhargav Bhatt,Stephen DeBacker,Wei Ho,Tasho Kaletha,Jeffrey Lagarias,Kartik Prasanna,Andrew Snowden和Michael Zieve)将监督该项目。该项目将支持一些倡议,以扩大在这些数学领域的参与,并鼓励新的合作模式。这些举措包括:㈠三人小组合作,其中至少有三名参与者组成的纵向一体化团队共同研究项目; ㈡一系列本科生计算倡议讲习班,通过这些讲习班,本科生将通过研究涉及理论和编码混合的计算问题来进行数学研究;(iii)一系列不同形式的夏季研讨会,将涉及并受益于来自全国各地的年轻数学家;(iv)一个更传统的REU计划;(v)一个涉及密歇根州其他大学的“数论日”。将有几个新的招聘举措,将包括桥梁硕士课程的扩展和本科课程的发展,这将普及本提案中的数学,并使其更容易获得密歇根大学本科人口中的不同受众。数论和表示论都是数学的核心领域,并且高度相互关联。这些领域之间的联系在朗兰兹纲领中最为明显,该纲领预测了数域上多项式的根与代数群的表示之间的关系;这种联系是数学中一些最引人注目的成就的原因,例如费马最后定理的证明。在这些领域培养下一代数学家对国家至关重要,因为他们在数学中发挥着核心作用,也因为这些领域在密码学、加密货币和区块链技术等领域的重要实际应用。近年来,该领域有了重大的发展,包括完美空间理论、自守表示的分类、数的几何和算术不变理论以及代数圈的算术理论。该基金会的PI们拥有涵盖所有这些最新发展的专业知识,并将通过培训博士后、研究生和本科生来沿着这些知识,以增加在这些领域从事职业的美国公民的数量。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry on rings of differential operators
微分算子环上的对称性
- DOI:10.1016/j.jalgebra.2021.07.007
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Quinlan-Gallego, Eamon
- 通讯作者:Quinlan-Gallego, Eamon
Functions with integer-valued divided differences
具有整数值除差的函数
- DOI:10.1016/j.jnt.2021.06.020
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:O'Desky, Andrew
- 通讯作者:O'Desky, Andrew
The Kottwitz conjecture for unitary PEL-type Rapoport–Zink spaces
- DOI:10.1515/crelle-2022-0077
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Alexander Bertoloni Meli;Kieu Hieu Nguyen
- 通讯作者:Alexander Bertoloni Meli;Kieu Hieu Nguyen
The six functors for Zariski-constructible sheaves in rigid geometry
刚性几何中 Zariski 可构造滑轮的六个函子
- DOI:10.1112/s0010437x22007291
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Bhatt, Bhargav;Hansen, David
- 通讯作者:Hansen, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kartik Prasanna其他文献
Arithmetic aspects of the theta correspondence
theta 对应的算术方面
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Kartik Prasanna - 通讯作者:
Kartik Prasanna
Integrality of a ratio of Petersson norms and level-lowering congruences
Petersson 范数与降级同余之比的完整性
- DOI:
10.4007/annals.2006.163.901 - 发表时间:
2006 - 期刊:
- 影响因子:4.9
- 作者:
Kartik Prasanna - 通讯作者:
Kartik Prasanna
Generalized heegner cycles and p-adic rankin L-series
广义海格纳循环和 p-adic 兰金 L 级数
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Bertolini;H. Darmon;Kartik Prasanna - 通讯作者:
Kartik Prasanna
On the Fourier coefficients of modular forms of half-integral weight
- DOI:
10.1515/forum.2010.008 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kartik Prasanna - 通讯作者:
Kartik Prasanna
P-adic L-functions and the coniveau filtration on Chow groups
P-adic L-函数和 Chow 组的 coniveau 过滤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Bertolini;H. Darmon;Kartik Prasanna;B. Conrad - 通讯作者:
B. Conrad
Kartik Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kartik Prasanna', 18)}}的其他基金
Automorphic Forms, Arthur Packets, and Algebraic Cycles
自守形式、亚瑟包和代数圈
- 批准号:
2001293 - 财政年份:2020
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Algebraic Cycles and Motivic Cohomology in the Context of the Langlands Program
朗兰兹纲领背景下的代数环和动机上同调
- 批准号:
1600494 - 财政年份:2016
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Arithmetic of automorphic forms: cycles, periods and p-adic L-functions
自守形式的算术:循环、周期和 p 进 L 函数
- 批准号:
1160720 - 财政年份:2012
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
1015173 - 财政年份:2009
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
0801191 - 财政年份:2008
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
- 批准号:
2231514 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
RTG: Number Theory and Arithmetic Geometry at Berkeley
RTG:伯克利分校的数论和算术几何
- 批准号:
1646385 - 财政年份:2017
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
RTG: Coding Theory, Cryptography, and Number Theory
RTG:编码理论、密码学和数论
- 批准号:
1547399 - 财政年份:2016
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
- 批准号:
1502553 - 财政年份:2015
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
RTG: Research Training Group in Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论研究培训小组
- 批准号:
1502651 - 财政年份:2015
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
RTG: Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论
- 批准号:
1344994 - 财政年份:2014
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
- 批准号:
0838210 - 财政年份:2009
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739346 - 财政年份:2008
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739380 - 财政年份:2008
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739400 - 财政年份:2008
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant