Algebraic Cycles and Motivic Cohomology in the Context of the Langlands Program

朗兰兹纲领背景下的代数环和动机上同调

基本信息

项目摘要

This research project lies at the interface of algebraic geometry and number theory. Algebraic geometry is the study of the geometry of shapes cut out by systems of polynomial equations, while in number theory one is often interested in finding explicit solutions to such systems in rational numbers or integers. The problem of finding such solutions is a foundational question in mathematics, having been studied for more than two thousand years, and is a central theme of this proposal. This project will investigate higher dimensional versions of this question in specific contexts arising from modular and automorphic functions. Modular and automorphic functions encode deep arithmetic information and are increasingly playing important roles in other fields, including theoretical physics. This project aims to broaden and deepen knowledge in this fundamental area of mathematics.More specifically, the award involves work on five distinct projects on algebraic cycles in the context of the Langlands program: (i) integral period relations for Hilbert modular forms and their analogs on quaternionic Shimura varieties; (ii) the Bloch-Beilinson conjecture for Rankin-Selberg L-functions and in particular constructing cycles corresponding to the vanishing of the central value; (iii) the construction of absolute Hodge classes corresponding to cases of Langlands functoriality; (iv) the study of the injectivity of the Abel-Jacobi map for zero cycles on surfaces over number fields; (v) the relation between motivic cohomology and the cohomology of automorphic forms. A theme in many of the projects is the construction of explicit algebraic cycles or more generally elements in motivic cohomology, whose existence is often predicted by deep general conjectures on algebraic cycles.
本研究项目是代数几何与数论的交叉领域。代数几何是研究由多项式方程系统切割出的形状的几何,而在数论中,人们通常对在有理数或整数中找到这种系统的显式解感兴趣。找到这样的解是数学中的一个基本问题,已经被研究了两千多年,也是这个提议的中心主题。本项目将在由模函数和自同构函数引起的特定情况下研究这个问题的高维版本。模函数和自同构函数编码了深层次的算术信息,在包括理论物理在内的其他领域发挥着越来越重要的作用。该项目旨在拓宽和深化这一数学基础领域的知识。更具体地说,该奖项涉及在Langlands计划背景下对代数循环的五个不同项目的工作:(i) Hilbert模形式及其在四元数Shimura变体上的类似物的积分周期关系;(ii) Rankin-Selberg l -函数的Bloch-Beilinson猜想,特别是与中心值消失相对应的构造循环;(iii)构造与朗兰泛函性相对应的绝对霍奇类;(iv)研究了数域表面上零环的Abel-Jacobi映射的注入性;(5)动机上同调与自同构形式上同调的关系。许多项目的主题是构造显式代数环或更一般的动机上同调元素,其存在通常是通过对代数环的深刻一般猜想来预测的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kartik Prasanna其他文献

Arithmetic aspects of the theta correspondence
theta 对应的算术方面
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kartik Prasanna
  • 通讯作者:
    Kartik Prasanna
Integrality of a ratio of Petersson norms and level-lowering congruences
Petersson 范数与降级同余之比的完整性
  • DOI:
    10.4007/annals.2006.163.901
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Kartik Prasanna
  • 通讯作者:
    Kartik Prasanna
Generalized heegner cycles and p-adic rankin L-series
广义海格纳循环和 p-adic 兰金 L 级数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bertolini;H. Darmon;Kartik Prasanna
  • 通讯作者:
    Kartik Prasanna
On the Fourier coefficients of modular forms of half-integral weight
  • DOI:
    10.1515/forum.2010.008
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kartik Prasanna
  • 通讯作者:
    Kartik Prasanna
P-adic L-functions and the coniveau filtration on Chow groups
P-adic L-函数和 Chow 组的 coniveau 过滤
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bertolini;H. Darmon;Kartik Prasanna;B. Conrad
  • 通讯作者:
    B. Conrad

Kartik Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kartik Prasanna', 18)}}的其他基金

Automorphic Forms, Arthur Packets, and Algebraic Cycles
自守形式、亚瑟包和代数圈
  • 批准号:
    2001293
  • 财政年份:
    2020
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
RTG: Number Theory and Representation Theory at the University of Michigan
RTG:密歇根大学数论和表示论
  • 批准号:
    1840234
  • 财政年份:
    2019
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Arithmetic of automorphic forms: cycles, periods and p-adic L-functions
自守形式的算术:循环、周期和 p 进 L 函数
  • 批准号:
    1160720
  • 财政年份:
    2012
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
  • 批准号:
    1015173
  • 财政年份:
    2009
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
  • 批准号:
    0801191
  • 财政年份:
    2008
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
  • 批准号:
    DP240102899
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Discovery Projects
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Algebraic Cycles and L-functions
代数圈和 L 函数
  • 批准号:
    2401337
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
  • 批准号:
    2910180
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Studentship
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
  • 批准号:
    2401025
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
  • 批准号:
    2339237
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333101
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Improving Functional Regeneration and Engraftment of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells by Brief Cycles of Transient Reprogramming
通过短暂的瞬时重编程周期改善人诱导多能干细胞来源的心肌细胞的功能再生和植入
  • 批准号:
    24K11267
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unraveling oceanic multi-element cycles using single cell ionomics
使用单细胞离子组学揭示海洋多元素循环
  • 批准号:
    2875388
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了