EAGER: Suppressing Lithium Dendrite Growth by Functionally Graded Materials

EAGER:通过功能梯度材料抑制锂枝晶生长

基本信息

  • 批准号:
    1840732
  • 负责人:
  • 金额:
    $ 14.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Current lithium-ion batteries use a mixture of active materials, conductive additives, and binders, which have been quickly reaching the limit of their functionality in terms of energy density, power efficiency, and durability. This EArly-concept Grant for Exploratory Research (EAGER) project addresses developing a fundamental scientific understanding of a new manufacturing process as well as addressing the bottleneck in the development of the next generation of rechargeable batteries. The technology can also be applied to the fabrication of other newly designed materials, such as free-standing and binder-free composites. The broader impacts are potentially very large, and the approach could be transformative, as the approach has direct application in the automotive, electronics, agricultural equipment, aerospace, and defense industries. As such, the project directly impacts economic welfare and national security of the United States. In addition to supporting graduate students, the project will bring education opportunities for learning state-of-the-art fabrication processes to a diverse array of students, including women, the disabled, and underrepresented minorities in science, technology, engineering, and math (STEM). Social events like the annual Maker Faire at Kansas City (a two-day exhibit and science show, that drew more than 17,000 visitors ranging in age from toddlers to grandparents from nearly all 50 states in 2017) will be utilized to disseminate and share the research findings, as well as bring education to the general public. While being the lightest metals (0.534 g/cm3) and possessing the lowest negative reduction potential (-3.05 V) against a standard hydrogen electrode, lithium metal is merited with extremely high theoretical specific capacity (3,829 mAh/g) as compared to carbon anode in lithium-ion batteries (with a specific capacity of 372 mAh/g). Although promising, the development of rechargeable lithium metal batteries has been impeded by such bottlenecks as Li dendrite growth. To address this issue, the Electric-Field-Augmented Ultrasonic Spray Pyrolysis (EFAUSP) process will enable the fabrication of functionally graded materials (FGMs), which can suppress Li dendrite growth. However, to date, there exists a knowledge gap in understanding the synergistic effects of the spray's generation, transport, and deposition in the EFAUSP process. For example, the turbulent jet with sprays possesses a series of eddies that determine the distribution of deposition droplets or particles and, eventually, deposition pattern. The research will provide comprehensive knowledge of the turbulence-spray interactions to realize the fabrication of FGMs. In addition, new knowledge and tools will be developed to examine what the best FGMs are for controlling and suppressing Li dendrite growth, which will have a significant impact on the battery industry. This potentially transformative work is a crucial step on the path to making rechargeable lithium metal batteries commercially available. Moreover, the fundamental knowledge gained in the work will allow the development of a simple, low-cost, and scalable fabrication technology that could revolutionize battery fabrication. This technology will have a significant impact on society through its effects on energy, transportation, the portable device industry, and other areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前的锂离子电池使用活性材料、导电添加剂和粘结剂的混合物,这些材料在能量密度、功率效率和耐用性方面已经迅速达到其功能的极限。这一早期概念探索性研究资助(AGIRE)项目致力于发展对新制造工艺的基本科学理解,并解决下一代可充电电池开发的瓶颈。该技术还可应用于其他新设计材料的制造,如自立式和无粘结剂复合材料。更广泛的影响可能是非常大的,这种方法可能是变革性的,因为这种方法直接应用于汽车、电子、农业设备、航空航天和国防工业。因此,该项目直接影响到美国的经济福利和国家安全。除了支持研究生,该项目还将为各种学生带来学习最先进制造工艺的教育机会,包括女性、残疾人和科学、技术、工程和数学(STEM)领域代表性不足的少数族裔。堪萨斯城一年一度的Maker Fire(为期两天的展览和科学展览,2017年吸引了来自几乎所有50个州的1.7万多名年龄从蹒跚学步的孩子到祖父母)等社交活动将被用来传播和分享研究成果,并为普通公众带来教育。虽然锂是最轻的金属(0.534 g/cm~3),在标准氢电极上具有最低的负还原电位(-3.05V),但与锂离子电池中的碳负极(比容量为372mAh/g)相比,金属锂具有极高的理论比容量(3829mAh/g)。尽管锂金属二次电池前景看好,但它的发展一直受到锂枝晶生长等瓶颈的阻碍。为了解决这一问题,电场增强超声喷雾热解(EFAUSP)工艺将能够制备能够抑制Li枝晶生长的功能梯度材料(FGM)。然而,到目前为止,在了解喷雾在EFAUSP过程中的产生、传输和沉积的协同效应方面存在着知识差距。例如,带有喷雾的湍流射流具有一系列涡流,这些涡流决定了沉积液滴或颗粒的分布,并最终决定了沉积模式。这项研究将为实现功能梯度材料的制备提供全面的湍流-喷雾相互作用的知识。此外,将开发新的知识和工具来研究什么是控制和抑制Li树枝晶生长的最佳功能梯度材料,这将对电池行业产生重大影响。这项具有潜在变革性的工作是使可充电金属锂电池商业化的关键一步。此外,在这项工作中获得的基本知识将使一种简单、低成本和可扩展的制造技术的开发成为可能,这将使电池制造发生革命性变化。这项技术将通过其对能源、交通、便携式设备行业和其他领域的影响对社会产生重大影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Liu其他文献

Structural basis of copper binding by a dimeric periplasmic protein forming a six-helical bundle
二聚周质蛋白形成六螺旋束的铜结合的结构基础
  • DOI:
    10.1016/j.jinorgbio.2022.111728
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jingyu Yang;Min Gao;Jia Wang;Chao He;Xiao Wang;Lin Liu
  • 通讯作者:
    Lin Liu
Plasma D-dimer levels are associated with disease progression in diabetic nephropathy: a two-center cohort study
血浆 D-二聚体水平与糖尿病肾病的疾病进展相关:一项双中心队列研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yedong Yu;Caifeng Zhu;Yi Lin;Qian Qian;Xiao;Wen;Minmin Wang;Jianguang Gong;Maosheng Chen;Lin Liu;Rizhen Yu;Quanquan Shen;Lina Shao;Bin Zhu
  • 通讯作者:
    Bin Zhu
One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections
单宁酸一步疏水化,用于导管抗菌涂层,预防导管相关感染
  • DOI:
    10.1039/c9bm01223k
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Lin Liu;Hengchong Shi;Huan Yu;Rongtao Zhou;Jinghua Yin;Shifang Luan
  • 通讯作者:
    Shifang Luan
Simulation of stray grain formation in Ni-based single crystal turbine blades fabricated by HRS and LMC techniques
HRS 和 LMC 技术制造的镍基单晶涡轮叶片中杂散晶粒形成的模拟
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yafeng Li;Lin Liu;Taiwen Huang;Miao Huo;Junsheng He;Jun Zhang;Hengzhi Fu
  • 通讯作者:
    Hengzhi Fu
span style=font-family:Times New Roman;color:black;font-size:12pt;Mesenchymal stem cells derived from different origins have unique sensitivities to different chemotherapeutic agents/span
不同来源的间充质干细胞对不同的化疗药物具有独特的敏感性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhengyu Qi;Yanmin Zhang;Lin Liu;Xin Guo;Jie Qin
  • 通讯作者:
    Jie Qin

Lin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Liu', 18)}}的其他基金

ITR: Advanced Algorithms for Spatial-Temporal Interactions in Distributed GIS
ITR:分布式 GIS 中时空交互的高级算法
  • 批准号:
    0081434
  • 财政年份:
    2000
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Continuing Grant

相似海外基金

Synthetic Double-stranded RNA Aggravates Allergen-induced Airway Inflammation and Remodelling While Suppressing the Expression of T Helper 2 Cytokines in the Sensitized Rats
合成双链 RNA 加重过敏原诱导的气道炎症和重塑,同时抑制致敏大鼠 T Helper 2 细胞因子的表达
  • 批准号:
    480732
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
Complex approaches to suppressing eye damage in children and creating mechanisms that promote good behavior
抑制儿童眼部损伤并建立促进良好行为的机制的复杂方法
  • 批准号:
    23K02694
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Poverty alleviation and suppressing the agricultural pests damage using alarm pheromone components
利用报警信息素成分扶贫抑制农业病虫害
  • 批准号:
    23H03607
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Allogeneic DNT cell therapy synergizes with T cells to promote anti-leukemic activities while suppressing GvHD
同种异体 DNT 细胞疗法与 T 细胞协同作用,促进抗白血病活性,同时抑制 GvHD
  • 批准号:
    493332
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
Neuroprotective, regenerative, and pain-suppressing effects of mesenchymal stromal cell-derived exosomes for neural injury
间充质基质细胞来源的外泌体对神经损伤的神经保护、再生和镇痛作用
  • 批准号:
    23K08628
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of efficient methods for suppressing the invasive alien tree species, Akagi, in the Ogasawara Islands, and environmental impact assessment
小笠原群岛外来入侵树种“赤城”的有效抑制方法开发及环境影响评价
  • 批准号:
    23K18541
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
IgE-suppressing small molecule compound Xanthopurpurin analog for multiple food allergies
抑制 IgE 的小分子化合物黄紫嘌呤类似物,用于治疗多种食物过敏
  • 批准号:
    10761370
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
IgE Suppressing Berberine Nanomedicine for Treatment of Food Allergies
抑制 IgE 的小檗碱纳米药物治疗食物过敏
  • 批准号:
    10698900
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
IgE Suppressing Berberine Nanomedicine for Treatment of Peanut and Tree nut Allergies
抑制 IgE 的小檗碱纳米药物用于治疗花生和坚果过敏
  • 批准号:
    10649110
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
Elucidation of extracellular matrix proteins as a key factor in suppressing aging
阐明细胞外基质蛋白作为抑制衰老的关键因素
  • 批准号:
    23K10927
  • 财政年份:
    2023
  • 资助金额:
    $ 14.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了