EAGER: Using Large-scale Web Data for Online Attention Models and Identification of Reading Disabilities

EAGER:使用大规模网络数据进行在线注意力模型和阅读障碍识别

基本信息

  • 批准号:
    1840751
  • 负责人:
  • 金额:
    $ 29.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Media websites now capture intricate measures of engagement from millions of readers. These measures, such as in-page scrolling and viewport position, can help us understand patterns of user attention beyond simple measures like time spent on page. This exploratory project will transform the use of this under-utilized attention data by showing how such data, mostly in the context of online news articles, can lead to better understanding of user behavior online, and help capture (and reason about) user attention at scale. However, such data is extremely noisy and challenging to analyze. The researchers will explore developing new techniques for data analysis to reason about the connection between language, text, and attention on the Web. Using these data, and novel analysis techniques, the project will also explore how to identify users with reading difficulties, and potentially support them in online reading tasks. The potential outcomes of this project are algorithms and methods that can be used by news content providers to develop a refined understanding of different types of readers, according to how they interact and read news articles online. More importantly, potential outcomes also include advancements in how such publishers can detect, and support, users with reading difficulties. Such advancement has the potential to lead to improvements in online experiences for the estimated 7% to 15% of the population who suffer from reading disabilities. This project directly addresses multiple challenges in making this new type of large-scale data useful and usable in different settings, and is likely to result in a number of key intellectual contributions in large-scale information management, machine learning, and human computer interaction. The first significant challenge is in modeling and processing the raw large-scale data to result in a robust attention signals. The data is extremely noisy and challenging to analyze and understand, with news articles of different formats, different content types, used by different groups of users. Second, the project will make a unique contribution by using novel deep learning techniques to understand the interaction between language and attention, at scale. Such modeling can extend current Natural Language Processing (NLP) techniques to improve methods for the analysis of language and of narrative in the context of news articles, and more broadly for reading tasks. Finally, a combination of field studies and large-scale data analysis will be required to understand the attention patterns of users who may have difficulties in reading. A field study will collect data from users who are known to have reading disabilities, in order to develop a technique that can help estimate a user's reading difficulty from the attention data in a large interaction dataset. This project will thus inform work that combines NLP and Human-Computer Interaction to suggest possible paths for supporting such users in online reading tasks. In order to support further research and reproducibility, the resulting data, software, and models used in this project available to other researchers, as possible. The project results will be disseminated via research papers and talks to be academic and industry audiences, and through the project website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
媒体网站现在从数以百万计的读者那里获得了复杂的参与指标。这些测量,如页面内滚动和视口位置,可以帮助我们理解用户注意力的模式,而不仅仅是像在页面上花费的时间这样简单的测量。这个探索性项目将通过展示这些数据(主要是在在线新闻文章的背景下)如何更好地理解在线用户行为,并帮助大规模捕获(和推理)用户注意力,来改变这些未充分利用的注意力数据的使用。然而,这样的数据非常嘈杂,很难分析。研究人员将探索开发新的数据分析技术,以推断网络上语言、文本和注意力之间的联系。利用这些数据和新颖的分析技术,该项目还将探索如何识别有阅读困难的用户,并潜在地支持他们完成在线阅读任务。该项目的潜在成果是算法和方法,新闻内容提供商可以根据不同类型的读者互动和在线阅读新闻文章的方式,使用这些算法和方法来更好地理解不同类型的读者。更重要的是,潜在的结果还包括这些出版商如何发现和支持有阅读困难的用户。这种进步有可能改善7%至15%的阅读障碍人群的在线体验。该项目直接解决了使这种新型大规模数据在不同环境中有用和可用的多重挑战,并可能在大规模信息管理、机器学习和人机交互方面产生许多关键的智力贡献。第一个重大挑战是如何对原始的大规模数据进行建模和处理,以产生鲁棒的注意力信号。数据非常嘈杂,很难分析和理解,不同格式、不同内容类型的新闻文章被不同的用户群体使用。其次,该项目将通过使用新颖的深度学习技术来大规模地理解语言和注意力之间的相互作用,从而做出独特的贡献。这种建模可以扩展当前的自然语言处理(NLP)技术,以改进新闻文章上下文中的语言和叙事分析方法,并更广泛地用于阅读任务。最后,将需要实地研究和大规模数据分析相结合,以了解可能有阅读困难的用户的注意模式。实地研究将收集已知有阅读障碍的用户的数据,以便开发一种技术,可以帮助从大型交互数据集中的注意力数据中估计用户的阅读困难。因此,该项目将为结合NLP和人机交互的工作提供信息,以建议支持此类用户在线阅读任务的可能路径。为了支持进一步的研究和可重复性,本项目中使用的结果数据、软件和模型尽可能提供给其他研究人员。项目成果将通过研究论文和讲座向学术界和工业界的听众以及通过项目网站进行传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Local News Social Coverage and Engagement at Scale during the COVID-19 Pandemic
了解 COVID-19 大流行期间当地新闻的大规模社会报道和参与度
Measuring and Understanding Online Reading Behaviors of People with Dyslexia
测量和理解阅读障碍者的在线阅读行为
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grusky, Max;Taft, Jessie;Naaman, Mor;Azenkot, Shiri
  • 通讯作者:
    Azenkot, Shiri
Information Needs of Essential Workers During the COVID-19 Pandemic
COVID-19 大流行期间基本工作人员的信息需求
Understanding Reader Backtracking Behavior in Online News Articles
了解在线新闻文章中的读者回溯行为
  • DOI:
    10.1145/3308558.3313571
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smadja, Uzi;Grusky, Max;Artzi, Yoav;Naaman, Mor
  • 通讯作者:
    Naaman, Mor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mor Naaman其他文献

The Role of Source and Expressive Responding in Political News Evaluation
来源和表达性回应在政治新闻评价中的作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maurice Jakesch;Moran Koren;A. Evtushenko;Mor Naaman
  • 通讯作者:
    Mor Naaman
VoterFraud2020: a Multi-modal Dataset of Election Fraud Claims on Twitter
VoterFraud2020:Twitter 上选举舞弊索赔的多模式数据集
  • DOI:
    10.1609/icwsm.v15i1.18113
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Abilov;Yiqing Hua;Hana Matatov;Ofra Amir;Mor Naaman
  • 通讯作者:
    Mor Naaman
Requirements for mobile photoware
手机拍照软件要求
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morgan G. Ames;Dean Eckles;Mor Naaman;M. Spasojevic;N. House
  • 通讯作者:
    N. House
Topicality, time, and sentiment in online news comments
在线新闻评论的话题性、时间和情绪
Modeling Sub-Document Attention Using Viewport Time
使用视口时间建模子文档注意力

Mor Naaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mor Naaman', 18)}}的其他基金

CHS: Medium: Collaborative Research: Charting a Research Agenda in Artificial Intelligence-Mediated Communication
CHS:媒介:协作研究:制定人工智能介导的沟通研究议程
  • 批准号:
    1901151
  • 财政年份:
    2019
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
EAGER: Strengthening Communities Through ICT-Enabled Indirect Resource Exchange
EAGER:通过信息通信技术支持的间接资源交换加强社区
  • 批准号:
    1665169
  • 财政年份:
    2017
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Detection and Presentation of Community and Global Event Content from Social Media Sources
III:小型:协作研究:从社交媒体源检测和呈现社区和全球活动内容
  • 批准号:
    1444493
  • 财政年份:
    2013
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
CAREER: Novel Approaches for Reasoning about Local Communities from Social Awareness Streams Data
职业:从社会意识流数据推理当地社区的新方法
  • 批准号:
    1446374
  • 财政年份:
    2013
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
CAREER: Novel Approaches for Reasoning about Local Communities from Social Awareness Streams Data
职业:从社会意识流数据推理当地社区的新方法
  • 批准号:
    1054177
  • 财政年份:
    2011
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Detection and Presentation of Community and Global Event Content from Social Media Sources
III:小型:协作研究:从社交媒体源检测和呈现社区和全球活动内容
  • 批准号:
    1017845
  • 财政年份:
    2010
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Standard Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
  • 批准号:
    BB/Y51391X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
  • 批准号:
    BB/Y513957/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Research Grant
Evaluating scientific and ethical approaches to newborn screening with whole genome sequencing using large-scale population cohorts
使用大规模人群队列评估通过全基因组测序进行新生儿筛查的科学和伦理方法
  • 批准号:
    MR/X021351/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Research Grant
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
  • 批准号:
    23H01395
  • 财政年份:
    2023
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
  • 批准号:
    23H03117
  • 财政年份:
    2023
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
  • 批准号:
    23KF0161
  • 财政年份:
    2023
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    $ 29.88万
  • 项目类别:
Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
  • 批准号:
    23K04007
  • 财政年份:
    2023
  • 资助金额:
    $ 29.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了