Understanding Oxygen Exchange and Transport at Surfaces and Grain Boundaries of Electroceramics
了解电陶瓷表面和晶界的氧交换和传输
基本信息
- 批准号:1840841
- 负责人:
- 金额:$ 58.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Many important technologies rely on the ability to utilize and manipulate oxygen. For example, most energy arises from oxygen reacting with fuels through combustion processes. Environmental technologies, such as the automotive catalytic converter, eliminate toxic gases like carbon monoxide through controlled reactions with oxygen. Emerging information technologies utilize oxygen transport in materials to develop high-density digital storage devices. There is potential for much better control and manipulation of oxygen by exploiting special properties of ceramics that can absorb, transport, and selectively release oxygen on demand, leading to higher data storage capacities, greater energy efficiencies, and a cleaner environment. The research in this project explores how oxygen can be incorporated, transported, and released from ceramics. Ceramics are believed to have specific sites on the surface where oxygen (from air) can easily enter the material. Using newly developed microscopes powerful enough to see atoms, in conjunction with advanced computational methods, this project is searching for these entry points and will use this information to design new classes of materials that significantly enhance oxygen exchange rates. Oxygen transport within the ceramic can be dramatically slowed down by nanoscale internal boundaries. Understanding the way in which oxygen can interact with these internal boundaries provides a roadmap for developing new materials with high oxygen transport, impacting areas such as sensors, membranes (used in gas and liquid separations), and fuel cells. This research addresses foundational concepts in materials science and provides excellent training opportunities for undergraduate and graduate students who are actively involved in all aspects of the project. In particular, they are gaining expertise in the areas of advanced materials, microscopy, and computational methods. Graduates will typically find employment in the digital technology industry, materials characterization, basic research facilities, and academia. TECHNICAL DETAILS: Oxygen exchange and transport within oxide ceramics has the potential to significantly improve technologies related to energy, the environment, and data storage. Critical to these improvements is the need to develop a fundamental understanding of how oxygen from gas molecules exchanges with a ceramic surface and incorporates into the crystal lattice. Surface structures such as steps and strained atomic terraces are the likely sites where oxygen exchange is most facile. Recent advances in dynamic in situ atomic-resolution electron microscopy allows atomic exchange processes to be visualized on the surface of a ceramic in real time. A major goal of this research is to identify the surface sites which are most active for oxygen exchange and to engineer new materials surfaces which maximize the exchange rate. Transport of oxygen through polycrystalline ceramics is often hindered by the presence of grain boundaries. Doping the grain boundaries with high concentrations of selected cations can improve the grain boundary ionic conductivity, but the reason for the enhancement is not yet understood. To understand the mechanistic origin for the improvement in transport through heavily doped grain boundaries, extensive materials modeling is being carried out using a combination of molecular and quantum mechanical theories. Ultimately, this tactic allows the elements associated with the highest transport to be identified, enabling grain boundary engineering approaches to be developed to create much faster ion conductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:许多重要的技术依赖于利用和操纵氧气的能力。例如,大多数能量来自氧气通过燃烧过程与燃料反应。环保技术,如汽车催化转化器,通过控制与氧气的反应来消除一氧化碳等有毒气体。新兴的信息技术利用材料中的氧传输来开发高密度数字存储设备。通过利用陶瓷的特殊性能,可以更好地控制和操纵氧气,这些陶瓷可以根据需要吸收,运输和选择性释放氧气,从而提高数据存储容量,提高能源效率和清洁环境。该项目的研究探索了氧气如何从陶瓷中结合,运输和释放。陶瓷被认为在表面上有特定的位置,氧气(来自空气)可以很容易地进入材料。使用新开发的强大到足以看到原子的显微镜,结合先进的计算方法,该项目正在寻找这些切入点,并将利用这些信息设计新的材料类别,显着提高氧交换率。陶瓷内的氧传输可以通过纳米级内部边界显著减慢。了解氧气与这些内部边界相互作用的方式为开发具有高氧气传输的新材料提供了路线图,影响了传感器,膜(用于气体和液体分离)和燃料电池等领域。这项研究解决了材料科学的基本概念,并为积极参与该项目各个方面的本科生和研究生提供了极好的培训机会。 特别是,他们正在获得先进材料,显微镜和计算方法领域的专业知识。毕业生通常会在数字技术行业,材料表征,基础研究设施和学术界找到工作。 技术规格:氧化物陶瓷内的氧交换和传输具有显著改善与能源、环境和数据存储相关的技术的潜力。这些改进的关键是需要对气体分子中的氧如何与陶瓷表面交换并结合到晶格中有一个基本的了解。表面结构,如步骤和紧张的原子梯田是可能的网站,氧交换是最容易的。动态原位原子分辨率电子显微镜的最新进展使原子交换过程在陶瓷表面上可以真实的实时可视化。这项研究的一个主要目标是确定最活跃的氧交换表面的网站和工程新材料的表面,最大限度地提高交换率。氧通过多晶陶瓷的传输常常受到晶界存在的阻碍。用高浓度的所选阳离子掺杂晶界可以改善晶界离子电导率,但增强的原因尚不清楚。为了理解通过重掺杂晶界的传输改善的机制起源,正在使用分子和量子力学理论的组合进行广泛的材料建模。最终,这一策略允许与最高传输相关的元素被识别,使晶界工程方法得以发展,以创造更快的离子导体。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-situ TEM Study of Oxygen Surface Exchange on Ceria, Gd-doped Ceria and Pr-doped Ceria
二氧化铈、掺钆氧化铈和掺镨氧化铈氧表面交换的原位TEM研究
- DOI:10.1017/s1431927621008102
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Tan, Mai;Crozier, Peter;Vincent, Joshua
- 通讯作者:Vincent, Joshua
Effect of Cation Point Defects in Doped Ceria Materials on Surface Oxygen Vacancies and Exchange Reactions
掺杂二氧化铈材料中阳离子点缺陷对表面氧空位和交换反应的影响
- DOI:10.1017/s1431927621010229
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Tan, Mai;Crozier, Peter
- 通讯作者:Crozier, Peter
Extracting High Spatio-Temporal Information Using Machine Learning from Pt Nanoparticles in CO Gas Environment
利用机器学习从 CO 气体环境中的 Pt 纳米颗粒中提取高时空信息
- DOI:10.1093/micmic/ozad067.999
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Haluai, Piyush;Morales, Adrià Marcos;Leibovich, Matan;Tan, Mai;Vincent, Joshua;Fernandez-Granda, Carlos;Crozier, Peter A
- 通讯作者:Crozier, Peter A
Seeing Cation Dopants in Gd-doped Ceria with STEM-EELS
使用 STEM-EELS 查看掺钆氧化铈中的阳离子掺杂剂
- DOI:10.1093/micmic/ozad067.195
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Tan, Mai;Yang, Shize;Crozier, Peter A
- 通讯作者:Crozier, Peter A
Atomic Scale Visualization of Cation Point Defects in Gadolinium Doped Ceria
掺钆二氧化铈中阳离子点缺陷的原子尺度可视化
- DOI:10.1017/s1431927622009151
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Tan, Mai;Gorelik, Rachel;Yang, Shize;Crozier, Peter A
- 通讯作者:Crozier, Peter A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Crozier其他文献
Peter Crozier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Crozier', 18)}}的其他基金
Probing the Vibrational States of Surface Sites on Catalytic Nanoparticles with Atomic Resolution Electron Energy-Loss Spectroscopy
用原子分辨率电子能量损失谱探测催化纳米粒子表面位点的振动状态
- 批准号:
2109202 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Elements: Collaborative Research: Community-driven Environment of AI-powered Noise Reduction Services for Materials Discovery from Electron Microscopy Data
要素:协作研究:社区驱动的人工智能降噪服务环境,用于从电子显微镜数据中发现材料
- 批准号:
2104105 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
MsRI-EW: Enabling Transformative Advances in Materials Engineering through Development of Novel Approaches to Electron Microscopy
MsRI-EW:通过开发电子显微镜新方法实现材料工程的变革性进展
- 批准号:
2038140 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
MRI: Acquisition of an Energy-Filtering, Direct Electron Detector for Advanced Soft and Hard Materials Research with In Situ Transmission Electron Microscopy
MRI:使用原位透射电子显微镜获取用于先进软硬材料研究的能量过滤直接电子探测器
- 批准号:
1920335 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Collaborative Research: Atomic Level Structural Dynamics in Catalysts
合作研究:催化剂中的原子级结构动力学
- 批准号:
1940263 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
Operando Electron Microscopy of Nanoparticle Surfaces and Interfaces During Catalysis
催化过程中纳米颗粒表面和界面的操作电子显微镜
- 批准号:
1604971 - 财政年份:2016
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Vibrational Spectroscopy with Subnanometer Electron Beams: Correlating Chemistry and Atomic Structure on Nanoparticle Surfaces
亚纳米电子束振动光谱:关联纳米颗粒表面的化学和原子结构
- 批准号:
1508667 - 财政年份:2015
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Structure, Reactivity and Transport at Surfaces and Interfaces of Doped Ceria Electrolytes and Cermets: An In Situ Atomic Resolution Investigation
掺杂二氧化铈电解质和金属陶瓷表面和界面的结构、反应性和传输:原位原子分辨率研究
- 批准号:
1308085 - 财政年份:2013
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Operando Transmission Electron Microscopy - A New Tool for Catalysis Research
Operando 透射电子显微镜 - 催化研究的新工具
- 批准号:
1134464 - 财政年份:2011
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
In Situ Nanocharacterization of the Synthesis and Early Evolution of Supported Metal and Bimetallic Nanoparticles for Catalytic Applications
用于催化应用的负载型金属和双金属纳米粒子的合成和早期演化的原位纳米表征
- 批准号:
0553445 - 财政年份:2006
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
相似海外基金
Current-Collector-Optional Measurements to Quantify Precious Metal and Polarization Impacts on Oxygen Surface Exchange Coefficients
电流收集器可选测量,用于量化贵金属和极化对氧表面交换系数的影响
- 批准号:
2241062 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
2311052 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Oxygen and Hydrogen Isotope Exchange in Clay Minerals
粘土矿物中的氧和氢同位素交换
- 批准号:
563728-2021 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
1924445 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
1924559 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Oxygen tracer exchange experiments combined with atom probe tomography to understand internal oxidation of advanced Ni-base alloys in high-temperature water
氧示踪交换实验结合原子探针断层扫描了解高温水中先进镍基合金的内氧化
- 批准号:
435243707 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Research Fellowships
Laboratory experiments on interfacial heat and gas exchange promoted by surface cooling: novel simultaneous thermal imaging and optical oxygen-concentration measurement
表面冷却促进界面热和气体交换的实验室实验:新型同步热成像和光学氧浓度测量
- 批准号:
327259972 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Research Grants
Decoding and tuning the surface stability of perovskite oxides at the atomic level for faster oxygen exchange kinetics in energy conversion devices
在原子水平上解码和调整钙钛矿氧化物的表面稳定性,以实现能量转换装置中更快的氧交换动力学
- 批准号:
324830457 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Research Fellowships
Real-time Imaging of High-Temperature Sintering and Associated Oxygen Isotope Exchange Reactions by Confocal Hyperspectral Raman Spectroscopy
通过共焦高光谱拉曼光谱对高温烧结和相关氧同位素交换反应进行实时成像
- 批准号:
390544388 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Research Grants
The dynamics of surface exchange reaction in oxygen permeable ceramics and its controlling factors
透氧陶瓷表面交换反应动力学及其控制因素
- 批准号:
17H03391 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)