Collaborative Research: Atomic Level Structural Dynamics in Catalysts
合作研究:催化剂中的原子级结构动力学
基本信息
- 批准号:1940263
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalysts help make chemical reactions go faster and their development impact areas such as energy, the environment, biotechnology, and drug design. The vision of this project is to harness computational tools from modern statistics and machine learning to perform data-driven discovery of new catalysts. To this end, a collaborative team is assembled with the complementary expertise in catalysts, materials science, biophysics, computational modelling, statistics, signal processing, and data science. How a reaction is accelerated depends on the dynamic changes in the structure and shape of a catalyst and its associated chemical reactants (a catalytic system). The goal of this project is to explore, describe, and quantify the dynamic structures of enzyme and nanoparticle catalysts at the atomic level. Recent advances in microscopy and spectroscopy now make it possible to measure with great detail dynamic changes in time and in dimensional space. This project combines recent advances in data science with these new experimental tools to extract features that describe the dynamic behaviour of catalytic systems. In addition, the project will enhance the development of educational infrastructure for data-intensive and interdisciplinary science, contribute to workforce development, promote gender equality in the sciences, and disseminate scientific knowledge. The guiding hypothesis of this research is that catalytic functionality cannot be fully understood without describing the atomic-level structural changes triggered by the molecular interactions of reactants with the catalyst. This hypothesis is tested by utilizing experimental datasets obtained from electron microscopy and single-molecule fluorescence resonance energy-transfer spectroscopy to explore structural dynamics in nanoparticles and enzymes. A data-analysis workflow, which integrates denoising, dimensionality reduction, clustering, and dynamic Markovian modelling, enables descriptions and classifications of the complex dynamical evolutions in spatiotemporally resolved measurements. The research develops and applies advanced methodologies to process noisy, high-dimensional data - a crucial bottleneck for the analysis of dynamic systems. The information extracted from experimental data guides the computational sampling of the conformational space of proteins and nanoparticles within a statistical physics framework, using supercomputer technology. This information facilitates the development of physical models that probe phenomena that are currently experimentally inaccessible, such as picosecond nuclear motions, as well as protein conformational changes and their coupling with chemical events. The transformative impact is to better understand catalysis by establishing a link between dynamic system response and catalytic functionality. The computational approaches developed through this project have the potential to be generally applied to many fundamental problems in materials science and structural biology where dynamic behaviours are important.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by the HDR and the Division of Chemistry within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化剂有助于加快化学反应,其发展影响了能源,环境,生物技术和药物设计等领域。该项目的愿景是利用现代统计学和机器学习的计算工具来执行数据驱动的新催化剂发现。为此,一个合作团队与催化剂,材料科学,生物物理学,计算建模,统计学,信号处理和数据科学的互补专业知识组装。如何加速反应取决于催化剂及其相关化学反应物(催化体系)的结构和形状的动态变化。该项目的目标是在原子水平上探索,描述和量化酶和纳米颗粒催化剂的动态结构。显微镜和光谱学的最新进展现在使人们能够非常详细地测量时间和空间维度的动态变化。该项目将数据科学的最新进展与这些新的实验工具相结合,以提取描述催化系统动态行为的特征。此外,该项目将加强数据密集型和跨学科科学教育基础设施的发展,促进劳动力发展,促进科学领域的性别平等,并传播科学知识。本研究的指导假设是,如果不描述反应物与催化剂的分子相互作用所引发的原子级结构变化,就不能完全理解催化功能。利用电子显微镜和单分子荧光共振能量转移光谱获得的实验数据集来测试这一假设,以探索纳米颗粒和酶的结构动力学。数据分析工作流程,它集成了去噪,降维,聚类和动态马尔可夫模型,使时空分辨测量的复杂动态演变的描述和分类。该研究开发并应用先进的方法来处理嘈杂的高维数据-动态系统分析的关键瓶颈。从实验数据中提取的信息指导统计物理框架内的蛋白质和纳米粒子的构象空间的计算采样,使用超级计算机技术。这些信息有助于物理模型的发展,探测目前实验无法达到的现象,如皮秒核运动,以及蛋白质构象变化及其与化学事件的耦合。变革性的影响是通过建立动态系统响应和催化功能之间的联系来更好地理解催化。通过该项目开发的计算方法有可能普遍应用于材料科学和结构生物学中的许多基础问题,其中动态行为很重要。该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分,该奖项由人类发展研究所和NSF数学与物理科学理事会化学部共同支持。该奖项反映了NSF的法定使命并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing Response and Functionality in Active Materials Systems with In Situ Electron Microscopy
使用原位电子显微镜探测活性材料系统的响应和功能
- DOI:10.1017/s1431927622001520
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Crozier, Peter A.
- 通讯作者:Crozier, Peter A.
Developing Big Data Methodologies for Analyzing Structural Reconfigurations in Catalysts Visualized with In Situ TEM
开发大数据方法来分析使用原位 TEM 可视化的催化剂中的结构重构
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Joshua L. Vincent, Barnaby D.
- 通讯作者:Joshua L. Vincent, Barnaby D.
Unsupervised Deep Video Denoising
- DOI:10.1109/iccv48922.2021.00178
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:D. Y. Sheth;S. Mohan;Joshua L. Vincent;R. Manzorro;P. Crozier;Mitesh M. Khapra;Eero P. Simoncelli
- 通讯作者:D. Y. Sheth;S. Mohan;Joshua L. Vincent;R. Manzorro;P. Crozier;Mitesh M. Khapra;Eero P. Simoncelli
Developing Deep Neural Network-based Denoising Techniques for Time-Resolved In Situ TEM of Catalyst Nanoparticles
开发基于深度神经网络的催化剂纳米粒子时间分辨原位 TEM 去噪技术
- DOI:10.1017/s1431927621001513
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Vincent, Joshua;Mohan, Sreyas;Manzorro, Ramon;Tang, Binh;Sheth, Dev;Khapra, Mitesh;Matteson, David;Simoncelli, Eero;Fernandez-Granda, Carlos;Crozier, Peter
- 通讯作者:Crozier, Peter
Harnessing High Temporal Resolutions to Explore Fluxional Behavior on CeO 2 Nanoparticles under Reducing Conditions
利用高时间分辨率探索还原条件下 CeO 2 纳米粒子的通量行为
- DOI:10.1017/s1431927622007085
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Manzorro, R.;Xu, Y.;Matteson, D. S.;Crozier, P. A.
- 通讯作者:Crozier, P. A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Crozier其他文献
Peter Crozier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Crozier', 18)}}的其他基金
Probing the Vibrational States of Surface Sites on Catalytic Nanoparticles with Atomic Resolution Electron Energy-Loss Spectroscopy
用原子分辨率电子能量损失谱探测催化纳米粒子表面位点的振动状态
- 批准号:
2109202 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Elements: Collaborative Research: Community-driven Environment of AI-powered Noise Reduction Services for Materials Discovery from Electron Microscopy Data
要素:协作研究:社区驱动的人工智能降噪服务环境,用于从电子显微镜数据中发现材料
- 批准号:
2104105 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
MsRI-EW: Enabling Transformative Advances in Materials Engineering through Development of Novel Approaches to Electron Microscopy
MsRI-EW:通过开发电子显微镜新方法实现材料工程的变革性进展
- 批准号:
2038140 - 财政年份:2020
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
MRI: Acquisition of an Energy-Filtering, Direct Electron Detector for Advanced Soft and Hard Materials Research with In Situ Transmission Electron Microscopy
MRI:使用原位透射电子显微镜获取用于先进软硬材料研究的能量过滤直接电子探测器
- 批准号:
1920335 - 财政年份:2019
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Understanding Oxygen Exchange and Transport at Surfaces and Grain Boundaries of Electroceramics
了解电陶瓷表面和晶界的氧交换和传输
- 批准号:
1840841 - 财政年份:2019
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
Operando Electron Microscopy of Nanoparticle Surfaces and Interfaces During Catalysis
催化过程中纳米颗粒表面和界面的操作电子显微镜
- 批准号:
1604971 - 财政年份:2016
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Vibrational Spectroscopy with Subnanometer Electron Beams: Correlating Chemistry and Atomic Structure on Nanoparticle Surfaces
亚纳米电子束振动光谱:关联纳米颗粒表面的化学和原子结构
- 批准号:
1508667 - 财政年份:2015
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Structure, Reactivity and Transport at Surfaces and Interfaces of Doped Ceria Electrolytes and Cermets: An In Situ Atomic Resolution Investigation
掺杂二氧化铈电解质和金属陶瓷表面和界面的结构、反应性和传输:原位原子分辨率研究
- 批准号:
1308085 - 财政年份:2013
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Operando Transmission Electron Microscopy - A New Tool for Catalysis Research
Operando 透射电子显微镜 - 催化研究的新工具
- 批准号:
1134464 - 财政年份:2011
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
In Situ Nanocharacterization of the Synthesis and Early Evolution of Supported Metal and Bimetallic Nanoparticles for Catalytic Applications
用于催化应用的负载型金属和双金属纳米粒子的合成和早期演化的原位纳米表征
- 批准号:
0553445 - 财政年份:2006
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225896 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304853 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204075 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Elucidation of the Role of Atomic Structures of CeO2(111) on the Nucleation and Growth of Metal Clusters through in situ STM and Theory
合作研究:通过原位STM和理论阐明CeO2(111)原子结构对金属团簇成核和生长的作用
- 批准号:
2204074 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
- 批准号:
2208865 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
- 批准号:
2208848 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant