CIF: EAGER: Statistical Inference and Decision-Making With Sequential Samples
CIF:EAGER:使用连续样本进行统计推断和决策
基本信息
- 批准号:1840860
- 负责人:
- 金额:$ 10.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modern world is rich with diverse sources of data that provide invaluable insights into underlying random phenomena. The data, however, generally provide only indirect or imprecise information about the latent phenomena due to measurement limitations or privacy protections. This project develops efficient algorithms to use sequential samples to infer a hidden random phenomenon and use this knowledge to make decisions. Outcomes of the project will improve the efficiency and accuracy of data-driven decision-making and inference in a wide range of applications such as marketing and recommendation systems, cloud computing, manufacturing, and health care. The investigators will publish the research outcomes to broad academic and professional audiences and incorporate them into teaching curricula via graduate and undergraduate courses.The framework studied in this project consists of a hidden random variable (or, a random vector) that can be indirectly sampled by choosing one of several measurement mechanisms (referred to as arms). Upon choosing one of the arms, an arbitrary function of a realization of the hidden random variable is observed, instead of a direct sample. Within this framework, the investigators pursue problems including i) maximizing the reward obtained by sampling different arms in a correlated multi-armed bandit setting; and ii) estimating the probability distribution of the hidden random variable using minimum number of samples. These research thrusts will be studied with three main goals: 1) understanding the fundamental limits of the problem via bounds on the cumulative regret, and the error in the estimated distribution; 2) designing efficient sampling algorithms that meet the fundamental limits; and 3) validating the proposed algorithms on real-world datasets. The project deviates from the classic multi-armed bandit framework due to the correlation between arms and from the classic statistical inference due to the sequential and multi-fidelity nature of the data generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代世界拥有丰富多样的数据来源,这些数据来源为潜在的随机现象提供了宝贵的见解。然而,由于测量限制或隐私保护,这些数据通常只提供关于潜在现象的间接或不准确的信息。这个项目开发了高效的算法,使用顺序样本来推断隐藏的随机现象,并使用这种知识来做出决策。该项目的成果将提高营销和推荐系统、云计算、制造和医疗保健等广泛应用中数据驱动的决策和推理的效率和准确性。研究人员将把研究成果发布给广大的学术和专业受众,并通过研究生和本科课程将其纳入教学课程。本项目研究的框架由一个隐藏的随机变量(或随机向量)组成,可以通过选择几种测量机制(称为ARMS)中的一种来间接采样。在选择其中一个臂时,观察到隐藏随机变量的实现的任意函数,而不是直接样本。在这个框架内,研究人员寻求的问题包括:i)在相关的多臂匪徒环境中最大化通过采样不同武器而获得的奖励;以及ii)使用最小样本数量估计隐藏随机变量的概率分布。这些研究目标主要有三个:1)通过累积后悔的界限和估计分布中的误差来理解问题的基本极限;2)设计满足基本极限的高效采样算法;3)在真实数据集上验证所提出的算法。由于ARM之间的相关性,以及由于数据生成的顺序和多保真度性质,该项目偏离了经典的多臂强盗框架。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osman Yagan其他文献
Analyzing R-Robustness of Random K-Out Graphs for the Design of Robust Networks
分析随机 K-Out 图的 R 鲁棒性以设计鲁棒网络
- DOI:
10.1109/icc45041.2023.10279643 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Eray Can Elumar;Osman Yagan - 通讯作者:
Osman Yagan
Osman Yagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osman Yagan', 18)}}的其他基金
CIF: Small: Modeling, Analysis, and Control of Contagion Processes in Networks
CIF:小型:网络中传染过程的建模、分析和控制
- 批准号:
2225513 - 财政年份:2022
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: The effects of evolutionary adaptations on the spreading of COVID-19
RAPID:合作研究:进化适应对 COVID-19 传播的影响
- 批准号:
2026985 - 财政年份:2020
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
CIF: Small: Contagion Processes in Multi-layer and Multiplex Networks
CIF:小:多层和多重网络中的传染过程
- 批准号:
1813637 - 财政年份:2018
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
CIF: Small: Designing Secure, Reliable, and Resilient Wireless Sensor Networks
CIF:小型:设计安全、可靠且有弹性的无线传感器网络
- 批准号:
1617934 - 财政年份:2016
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
NeTS: CIF: Small: Robust and Optimal Design of Interdependent Networks
NeTS:CIF:小型:相互依赖网络的稳健和优化设计
- 批准号:
1422165 - 财政年份:2014
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
相似海外基金
EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
- 批准号:
2409037 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
- 批准号:
2417794 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant