NeTS: CIF: Small: Robust and Optimal Design of Interdependent Networks
NeTS:CIF:小型:相互依赖网络的稳健和优化设计
基本信息
- 批准号:1422165
- 负责人:
- 金额:$ 45.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interdependent systems, such as the smart-grid, are rapidly emerging as the underpinning technology for major industries in the 21st century. Such systems are often more fragile in the face of node failures, attacks, and natural hazards than their isolated counterparts. This is because failures in one network may propagate to other networks and vice versa, leading to a cascade of failures that can potentially collapse the entire infrastructure. Mitigating these risks is critical for the successful development and evolution of many modern systems including the smart-grid. Traditional network science focuses on single networks, and thus lacks the methods and tools necessary to address vulnerabilities of even simple interdependent networks. This project aims to advance the state-of-the-art in modelling, controlling, and optimizing the robustness of interdependent networks by exploring several novel research directions. The first phase targets a study of robustness of interdependent networks under various topologies when nodes in one network may depend on more than one node of another network, and vice versa, aiming to characterize the critical fraction of nodes whose failure will lead to the collapse of the entire system. This also exposes the trade-off between network robustness and the number of inter-connections (or resources) allocated. The study then advances to optimal allocation of support-dependency links to maximize the robustness of the smart-grid, seeking to characterize the distribution that will lead to maximal robustness. The results aim to articulate concrete design guidelines on how available back-up resources should be allocated in order to best sustain i) random node failures; and ii) targeted attacks. Successful completion of the project will require the development of new techniques and approaches in the fields of network science, discrete optimization, and random graph theory, together with acquisition and analysis of real-world data from existing smart-grid networks.Given the sheer size of its market for power transmission and distribution, the US is likely to become a major consumer of smart-grid technology in the near future, especially with the integration of renewable sources and electric vehicles. All of these point to a future where the reliability of the smart grid will become paramount. This research program is specifically designed to have a positive impact on the successful development and the evolution of smart-grids, and is likely to have a positive impact on the reliability of other national infrastructures as well. Research materials will be incorporated into the teaching curricula via a new course, and will be disseminated to broad academic and professional audiences. The project will engage PhD and Masters students in research in an area of national importance, and will include outreach efforts to high schools.
相互依赖的系统,如智能电网,正在迅速成为21世纪世纪主要行业的基础技术。面对节点故障、攻击和自然灾害,此类系统通常比孤立的系统更脆弱。这是因为一个网络中的故障可能会传播到其他网络,反之亦然,导致可能导致整个基础设施崩溃的级联故障。减轻这些风险对于包括智能电网在内的许多现代系统的成功开发和发展至关重要。传统的网络科学专注于单个网络,因此缺乏必要的方法和工具来解决甚至简单的相互依赖网络的脆弱性。 该项目旨在通过探索几个新的研究方向来推进建模,控制和优化相互依赖网络的鲁棒性的最新技术。第一阶段的目标是研究在各种拓扑结构下,当一个网络中的节点可能依赖于另一个网络中的多个节点时,相互依赖网络的鲁棒性,反之亦然,旨在描述其故障将导致整个系统崩溃的节点的关键部分。这也暴露了网络鲁棒性和分配的互连(或资源)数量之间的权衡。然后,该研究进展到最佳分配的支持依赖关系的链接,以最大限度地提高智能电网的鲁棒性,寻求特征的分布,将导致最大的鲁棒性。研究结果旨在阐明关于如何分配可用备份资源的具体设计指南,以便最好地承受i)随机节点故障; ii)有针对性的攻击。 该项目的成功完成将需要在网络科学、离散优化和随机图论等领域开发新的技术和方法,以及从现有智能电网网络中获取和分析真实世界的数据。鉴于美国输电和配电市场的庞大规模,美国很可能在不久的将来成为智能电网技术的主要消费者。特别是可再生能源和电动汽车的整合。所有这些都指向了智能电网的可靠性将变得至关重要的未来。该研究计划旨在对智能电网的成功开发和发展产生积极影响,并可能对其他国家基础设施的可靠性产生积极影响。研究材料将通过一门新的课程纳入教学大纲,并将向广大学术界和专业人士散发。该项目将吸引博士和硕士生参与一个具有国家重要性的领域的研究,并将包括向高中开展外联工作。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osman Yagan其他文献
Analyzing R-Robustness of Random K-Out Graphs for the Design of Robust Networks
分析随机 K-Out 图的 R 鲁棒性以设计鲁棒网络
- DOI:
10.1109/icc45041.2023.10279643 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Eray Can Elumar;Osman Yagan - 通讯作者:
Osman Yagan
Osman Yagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osman Yagan', 18)}}的其他基金
CIF: Small: Modeling, Analysis, and Control of Contagion Processes in Networks
CIF:小型:网络中传染过程的建模、分析和控制
- 批准号:
2225513 - 财政年份:2022
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: The effects of evolutionary adaptations on the spreading of COVID-19
RAPID:合作研究:进化适应对 COVID-19 传播的影响
- 批准号:
2026985 - 财政年份:2020
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: EAGER: Statistical Inference and Decision-Making With Sequential Samples
CIF:EAGER:使用连续样本进行统计推断和决策
- 批准号:
1840860 - 财政年份:2018
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Contagion Processes in Multi-layer and Multiplex Networks
CIF:小:多层和多重网络中的传染过程
- 批准号:
1813637 - 财政年份:2018
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Designing Secure, Reliable, and Resilient Wireless Sensor Networks
CIF:小型:设计安全、可靠且有弹性的无线传感器网络
- 批准号:
1617934 - 财政年份:2016
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
- 批准号:
2327905 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
- 批准号:
2342690 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
- 批准号:
2334449 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
- 批准号:
2348624 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant