Non- and Semiparametric Techniques for Euler Equations
欧拉方程的非参数和半参数技术
基本信息
- 批准号:235833760
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individual risk perception is central to any form of decision making and its accurate empirical measurement is a prerequisite for practical applicability of many economic models. A valid econometric assessment of individual risk attitudes requires precise but tractable estimates of marginal utility in Euler equations associated with optimal intertemporal consumption choice. For these elements of key economic interest, however, available standard analytical techniques depend on simplifying model assumptions to treat data challenges such as nonstationary consumption and unknown correct functional form specification of utility. But in practice, it is often these technical conditions which drive the overall results and have thus produced various well-known empirical puzzles as e.g. the equity premium puzzle with ambiguous and contradicting estimates of individual risk perception. In order to avoid such restrictions, we develop general statistical techniques for such nonstandard conditions aiming to obtain novel insights of practical and economic relevance. In particular, our methods do not require parametric pre-specifications of utility functions but can flexibly determine their form from the data. Furthermore, these non- and semiparametric techniques are sufficiently general to allow for consistent estimation and testing with nonstationary but recurrent consumption entering utility in levels and not in stationary growth rates. In this sense, the methods are of cointegration type. The focus of this project is on semiparametric models which still allow for a flexible model fit but yield substantial improvements to the poor feasibility of pure nonparametric methods in available sample sizes of nonstationary consumption. In particular, we investigate estimation with recursive utility specifications and Epstein-Zin preferences for which many calibration studies have shown promising results. We expect that such general model classes can significantly improve on the practical performance of intertemporal optimization models providing a new understanding of some of the present puzzles.
个人风险感知是任何形式的决策的核心,其准确的经验测量是许多经济模型实际适用性的先决条件。对个人风险态度进行有效的计量经济学评估需要对与最优跨期消费选择相关的欧拉方程中的边际效用进行精确而易于处理的估计。然而,对于这些关键经济利益要素,可用的标准分析技术依赖于简化模型假设来处理数据挑战,如非平稳消费和未知的正确功能形式规范的效用。但在实践中,往往是这些技术条件推动了整体结果,从而产生了各种众所周知的经验难题,例如,对个人风险感知的模糊和矛盾估计的股权溢价难题。为了避免这种限制,我们开发了针对这种非标准条件的一般统计技术,旨在获得实用和经济相关性的新见解。特别是,我们的方法不需要对效用函数进行参数化预规范,而是可以从数据中灵活地确定其形式。此外,这些非参数和半参数技术具有足够的通用性,可以对非平稳但进入效用水平而非平稳增长率的经常性消费进行一致的估计和测试。从这个意义上说,这些方法是协整型的。这个项目的重点是半参数模型,它仍然允许灵活的模型拟合,但在非平稳消费的可用样本量中,对纯非参数方法的可行性差产生了实质性的改进。特别是,我们研究了递归效用规范和Epstein-Zin偏好的估计,许多校准研究已经显示出有希望的结果。我们期望这样的通用模型类可以显著提高跨期优化模型的实际性能,为当前的一些难题提供新的理解。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SEMIPARAMETRIC ESTIMATION WITH GENERATED COVARIATES
- DOI:10.1017/s0266466615000134
- 发表时间:2015-06
- 期刊:
- 影响因子:0.8
- 作者:E. Mammen;C. Rothe;M. Schienle
- 通讯作者:E. Mammen;C. Rothe;M. Schienle
Determination of vector error correction models in high dimensions
- DOI:10.1016/j.jeconom.2018.09.018
- 发表时间:2019-02-01
- 期刊:
- 影响因子:6.3
- 作者:Liang, Chong;Schienle, Melanie
- 通讯作者:Schienle, Melanie
Additive Models: Extensions and Related Models.
加法模型:扩展和相关模型
- DOI:10.1093/oxfordhb/9780199857944.013.007
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Mammen;E. Park;Schienle
- 通讯作者:Schienle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Melanie Schienle其他文献
Professorin Dr. Melanie Schienle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Melanie Schienle', 18)}}的其他基金
Quantile methods for complex financial systems
复杂金融系统的分位数方法
- 批准号:
290808748 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Semiparametric Techniques for Data Exploitation across Heterogeneous Populations
跨异质群体数据开发的半参数技术
- 批准号:
2310942 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Non- and Semiparametric Techniques for Euler Equations and Risk Measurement (B11)
欧拉方程和风险测量的非参数和半参数技术(B11)
- 批准号:
178788898 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Collaborative Research Centres
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6656498 - 财政年份:2002
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6659272 - 财政年份:2002
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6502527 - 财政年份:2001
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6504090 - 财政年份:2001
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6352931 - 财政年份:2000
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6325818 - 财政年份:2000
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6107015 - 财政年份:1999
- 资助金额:
-- - 项目类别:
SEMIPARAMETRIC REGRESSION TECHNIQUES FOR THE ANALYSIS OF BIOMEDICAL DATA
用于生物医学数据分析的半参数回归技术
- 批准号:
6271478 - 财政年份:1998
- 资助金额:
-- - 项目类别: