Gravitational Effects on Rotating Stars and Deep Water Waves
引力对旋转恒星和深水波的影响
基本信息
- 批准号:1841750
- 负责人:
- 金额:$ 10.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to investigate several important mathematical questions arising in the study of fluid flows that are significantly influenced by gravity. Two major sources of these questions are models of rotating stars and galaxies, and models of deep water waves in the ocean. The study of equilibrium shape and density distribution of rotating stars is a classical question in the history of mathematical physics. Early efforts beginning in the eighteenth century were devoted to finding ellipsoidal shapes with constant density. In the twentieth century, major progress was made by solving equations describing compressible fluids, thus allowing a more realistic model of stars with variable gaseous density. The mathematical method used to construct such solutions involves putting the same amount of gas in different shapes and density distributions, and finding one with the least physical energy. However, such a method only provides proof for existence of solutions, without delivering too much information on the shape of the star, or how the solution varies as the rotation speed of the star varies. In this project, the investigator aims to provide new existence proofs using a different method, which involves continuously deforming the shape of a round, non-rotating star to arrive at a rotating star solution. The new method is intended to return information about shape and dependence on rotation speed. For deep water waves, the investigator will study certain important model equations that describe internal waves below the ocean surface as well as spectacular phenomena in the atmosphere, such as the "Morning Glory" cloud seen in northeastern Australia. The internal waves described by such models have practical significance; for example, internal waves can interact with surface ocean waves to produce rogue waves that can damage or destroy ocean vessels or fixed structures.More specifically, the project aims to prove existence of rotating star solutions to the Euler-Poisson and Vlasov-Poisson equations, using an implicit function theorem type perturbation technique. Apart from proving detailed analytical estimates involving spaces adapted to the problem, the investigator will need to study the linearized operator by proving a vanishing theorem about a certain integro-differential equation for functions in the kernel. The research will study continuation of the solution curve to faster rotation speed using topological degree arguments, and discover possible breakdown mechanisms of the solution curve. In addition, the investigator plans to examine the phenomenon of mass bound on rotating white dwarf solutions to the Euler-Poisson equations, using both variational methods and spectral analysis. For models involving deep water waves, the project will explore the completely integrable aspect of the Benjamin-Ono equation. Building on previous work, the investigator will study existence, uniqueness, and asymptotic properties of the Jost solutions proposed in the Fokas-Ablowitz inverse scattering transform. These questions are closely related to the continuous spectrum of certain singular integral perturbations of the derivative operator.
该项目旨在研究在受重力显著影响的流体流动研究中出现的几个重要数学问题。这些问题的两个主要来源是旋转恒星和星系的模型,以及海洋中深水波的模型。旋转恒星的平衡形状和密度分布的研究是数学物理史上的经典问题。从世纪开始的早期努力致力于寻找具有恒定密度的椭球形状。在世纪,通过求解描述可压缩流体的方程取得了重大进展,从而允许具有可变气体密度的恒星的更现实的模型。用于构建此类解决方案的数学方法包括将相同数量的气体置于不同的形状和密度分布中,并找到具有最小物理能量的气体。然而,这种方法只提供了解的存在性的证明,而没有提供太多关于星星形状的信息,或者解如何随着星星的旋转速度变化而变化。在这个项目中,研究人员的目标是使用不同的方法提供新的存在性证明,该方法包括连续变形圆形非旋转星星的形状,以获得旋转星星的解决方案。新方法旨在返回有关形状和旋转速度依赖性的信息。对于深水波,研究人员将研究某些重要的模型方程,这些方程描述了海洋表面以下的内波以及大气中的壮观现象,例如在澳大利亚东北部看到的“牵牛花”云。该模型所描述的内波具有实际意义,例如,内波可以与表面海浪相互作用,产生可以损坏或摧毁海洋船只或固定结构的异常波。具体而言,该项目旨在使用隐函数定理型摄动技术证明Euler-Poisson和Vlasov-Poisson方程的旋转星星解的存在性。除了证明详细的分析估计,涉及空间适应的问题,调查人员将需要研究线性化运营商证明消失定理的某个积分微分方程的功能在内核。本研究将使用拓扑度参数研究解曲线向更快转速的延续,并发现解曲线可能的破裂机制。此外,研究人员计划研究的现象,质量约束旋转白色矮解决方案的欧拉-泊松方程,使用变分法和频谱分析。对于涉及深水波的模型,该项目将探讨Benjamin-Ono方程的完全可积性。在以前工作的基础上,研究者将研究在Fokas-Ablowitz逆散射变换中提出的Jost解的存在性、唯一性和渐近性质。这些问题与导数算子的某些奇异积分扰动的连续谱密切相关。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence of rotating magnetic stars
- DOI:10.1016/j.physd.2019.03.005
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:J. Jang;W. Strauss;Yilun Wu
- 通讯作者:J. Jang;W. Strauss;Yilun Wu
Global continuation and the theory of rotating stars
全局连续性和旋转恒星理论
- DOI:10.1090/qam/1550
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Wu, Yilun
- 通讯作者:Wu, Yilun
Steady States of Rotating Stars and Galaxies
- DOI:10.1137/17m1119391
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:W. Strauss;Yilun Wu
- 通讯作者:W. Strauss;Yilun Wu
Jost Solutions and the Direct Scattering Problem of the Benjamin--Ono Equation
Jost解与Benjamin--Ono方程的直接散射问题
- DOI:10.1137/17m1124528
- 发表时间:2017
- 期刊:
- 影响因子:2
- 作者:Wu, Yilun
- 通讯作者:Wu, Yilun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yilun Wu其他文献
Sialidase NEU3 silencing inhibits angiogenesis of EA.hy926 cells by regulating Wnt/β-catenin signaling pathway
- DOI:
10.1016/j.bbrc.2024.151098 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Yilun Wu;Xin Yuan;Yi Zhang;Fang Ma;Wei Zhao;Xinrui Sun;Xue Ma;Yingjiao Chen - 通讯作者:
Yingjiao Chen
Risk factors for experiencing Long-COVID symptoms: Insights from two nationally representative surveys
出现长期新冠症状的风险因素:两项全国代表性调查的见解
- DOI:
10.1101/2024.01.12.24301170 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yixuan Wu;Mitsuaki Sawano;Yilun Wu;Rishi M. Shah;Pamela Bishop;Akiko Iwasaki;Harlan Krumholz - 通讯作者:
Harlan Krumholz
Long COVID Characteristics and Experience: A Descriptive Study from the Yale LISTEN Research Cohort.
新冠病毒长期特征和经验:耶鲁大学 LISTEN 研究小组的描述性研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.9
- 作者:
Mitsuaki Sawano;Yilun Wu;Rishi M. Shah;Tianna Zhou;Adith Arun;Pavan Khosla;Shayaan Kaleem;Anushree Vashist;Bornali Bhattacharjee;Qinglan Ding;Yuan Lu;C. Caraballo;Frederick Warner;Chenxi Huang;Jeph Herrin;David F. Putrino;Teresa Michelsen;Liza Fisher;Cynthia Adinig;Akiko Iwasaki;H. Krumholz - 通讯作者:
H. Krumholz
Abnormal region detection in gastroscopic images by combining classifiers on neighboring patches
通过结合相邻斑块上的分类器检测胃镜图像中的异常区域
- DOI:
10.1109/icmlc.2009.5212217 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Su Zhang;Wei Yang;Yilun Wu;Rui Yao;Shidan Cheng - 通讯作者:
Shidan Cheng
An Mean Shift Based Gray Level Co-occurrence Matrix for Endoscope Image Diagnosis
基于均值平移的内窥镜图像诊断灰度共生矩阵
- DOI:
10.1007/978-3-642-13923-9_43 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yilun Wu;K. Sun;Xiaolin Lin;Shidan Cheng;Su Zhang - 通讯作者:
Su Zhang
Yilun Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yilun Wu', 18)}}的其他基金
Stratified Fluids and Completely Integrable PDEs
分层流体和完全可积偏微分方程
- 批准号:
2006212 - 财政年份:2020
- 资助金额:
$ 10.22万 - 项目类别:
Continuing Grant
Gravitational Effects on Rotating Stars and Deep Water Waves
引力对旋转恒星和深水波的影响
- 批准号:
1714343 - 财政年份:2017
- 资助金额:
$ 10.22万 - 项目类别:
Continuing Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
- 批准号:21477024
- 批准年份:2014
- 资助金额:86.0 万元
- 项目类别:面上项目
相似海外基金
Non-Oberbeck-Boussinesq Effects in the Ultimate State of Rapidly Rotating Rayleigh-Benard Convection
快速旋转瑞利-贝纳德对流终极状态下的非奥伯贝克-布辛涅斯克效应
- 批准号:
EP/V047388/1 - 财政年份:2021
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
Structure Formation Through Coriolis Effects in Rotating Fluid Flows 1=Engineering 2=Fluid Dynamics and Aerodynamics
通过旋转流体流动中的科里奥利效应形成结构 1=工程 2=流体动力学和空气动力学
- 批准号:
2206334 - 财政年份:2019
- 资助金额:
$ 10.22万 - 项目类别:
Studentship
Determining the Effects of Competing Instabilities in Complex Rotating Boundary Layers
确定复杂旋转边界层中竞争不稳定性的影响
- 批准号:
EP/R028699/1 - 财政年份:2018
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
Gravitational Effects on Rotating Stars and Deep Water Waves
引力对旋转恒星和深水波的影响
- 批准号:
1714343 - 财政年份:2017
- 资助金额:
$ 10.22万 - 项目类别:
Continuing Grant
Evaluating the effects of the cardiac stem cell therapy by a new microangiographic X-ray system using a rotating cerium anode
使用旋转铈阳极的新型微血管造影 X 射线系统评估心脏干细胞治疗的效果
- 批准号:
25861233 - 财政年份:2013
- 资助金额:
$ 10.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Effects of the timing of lifestyle behaviors on mental and physical functions in rotating shift workers
生活方式行为时间对轮班工人身心功能的影响
- 批准号:
25560365 - 财政年份:2013
- 资助金额:
$ 10.22万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A Study of Aerodynamic Characteristics of Airfoil in ground Effects using Rotating Disc
转盘研究机翼地面效应气动特性
- 批准号:
21560182 - 财政年份:2009
- 资助金额:
$ 10.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dispersion and Optical Drag Effects in Rotating Semiconductor Ring Lasers
旋转半导体环形激光器中的色散和光学阻力效应
- 批准号:
0524509 - 财政年份:2005
- 资助金额:
$ 10.22万 - 项目类别:
Standard Grant
CMG: Non-Hydrostatic Effects and New Diagnostics for the Long-Time Dynamics of Rotating and Stratified Flows
CMG:旋转和分层流长期动力学的非静水效应和新诊断
- 批准号:
0529596 - 财政年份:2005
- 资助金额:
$ 10.22万 - 项目类别:
Standard Grant
Effects of the dipole-dipole interaction on the properties of ultracold rotating dipolar gases
偶极-偶极相互作用对超冷旋转偶极气体性质的影响
- 批准号:
5454043 - 财政年份:2005
- 资助金额:
$ 10.22万 - 项目类别:
Priority Programmes