EAGER: Flexible III-N High-Electron-Mobility Transistors with Controlled External Bending Strains for Wide-Bandgap Semiconductor Devices
EAGER:用于宽带隙半导体器件的具有受控外部弯曲应变的柔性 III-N 高电子迁移率晶体管
基本信息
- 批准号:1842299
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Group III-Nitride (III-N) semiconductors have brought significant benefits to mankind as energy-efficient and environment-friendly light sources, as recognized by the Nobel Prize in Physics 2014. They are also important materials for energy-efficient electric power conversion and switching, wireless communication, electronic warfare, and optical storage systems. This project proposes to study the expanded functionality and further enhanced performance of the already high-performance and high-efficiency devices using mechanical bendability of the device structure. This project is expected to produce new-concept devices and related new device physics for the advancement of knowledge in the device technology. Furthermore, the outcome of this research will provide a potentially disruptive semiconductor platform that can be integrated in other semiconductor devices with multi-functionality and application versatility for energy saving and harvesting. The new concept has been developed based on theoretical studies and has yet to be proven by the demonstration of working devices, which is one of major objectives of the proposed project. The societal and economic impacts will be significant because electronics, photonics, and energy systems based on semiconductors are the backbone of modern technology and will be even more critical in the future with the adoption of electric vehicles and smart-grid systems. As an example, 30% of electrical energy passes through power electronics converters and 22% of total generated electricity is consumed in lighting, which means that significant benefits are expected in energy saving and reduction of greenhouse-gas emission. Education and outreach programs integrated with the research program will contribute to the dissemination of knowledge on green energy systems, semiconductor devices for sustainable technology, and their societal and environmental impacts.Flexible devices based on III-N heterostructures can be equipped with new functionalities and even further improved performance characteristics compared to wafer-based non-flexible devices by exploiting their unique properties of spontaneous and piezoelectric polarizations. Therefore, they open an opportunity to new-concept devices, multi-functional mechano-electro-photonic (MEP) devices, beyond just mechanically flexible devices, by the active control of the polarizations with variable external strains. The goals of the project are to prove the concept of the active polarization engineering applied in flexible III-N structures and to lay the foundation for the MEP devices in electronic, photonic, and energy-harvesting applications. Various multi-functional and/or higher-performance MEP devices based on III-N semiconductors will be developed by utilizing the interactions between electronic and optical properties and mechanical forces in the flexible heterostructures. The changes in fundamental characteristics of flexible high-electron-mobility transistors with controlled bending strains will be investigated via both modeling and experimental studies to prove the proposed concept of active polarization engineering. Technical methods and tasks include (1) device simulation with various curvature radii, (2) the development of high-fidelity fabrication process for bendable devices, and (3) the development of a physical model for the operation of MEP devices. This project is to produce proof-of-concept actively polarization-engineered electronic devices and related new device physics to demonstrate the potential of a new technology platform. The MEP devices offer the potential to radically change the understanding and applications of III-N semiconductor devices, leading to the creation of new-type devices and systems. New device physics and modeling results including the effect of static and dynamic external strains will provide a theoretical background of such devices for various applicationsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第三族氮化物(III-N)半导体作为节能环保的光源为人类带来了巨大的利益,这一点得到了2014年诺贝尔物理学奖的认可。 它们也是节能电力转换和开关、无线通信、电子战和光存储系统的重要材料。 本项目旨在研究利用器件结构的机械可弯曲性来扩展功能并进一步增强已经具有高性能和高效率的器件的性能。 该项目预计将产生新概念器件和相关的新器件物理,以促进器件技术知识的发展。 此外,这项研究的结果将提供一个潜在的颠覆性半导体平台,可以集成在其他半导体器件中,具有多功能性和应用多功能性,以实现节能和收获。 这一新概念是在理论研究的基础上发展起来的,还有待于通过工作装置的示范来证明,这是拟议项目的主要目标之一。 社会和经济影响将是重大的,因为基于半导体的电子、光子和能源系统是现代技术的支柱,随着电动汽车和智能电网系统的采用,这些系统在未来将变得更加重要。 例如,30%的电能通过电力电子转换器,22%的总发电量用于照明,这意味着预计将在节能和减少温室气体排放方面产生重大效益。 与研究计划相结合的教育和推广计划将有助于传播有关绿色能源系统、可持续技术的半导体器件、基于III-N异质结构的柔性器件可以配备有新的功能,并且与基于晶片的非异质结构相比,甚至进一步改善了性能特性。通过利用其自发和压电极化的独特性质来制造柔性器件。 因此,他们打开了一个机会,新概念的设备,多功能机电光子(MEP)设备,不仅仅是机械灵活的设备,通过主动控制的偏振与可变的外部应变。 该项目的目标是证明在灵活的III-N结构中应用的主动偏振工程的概念,并为MEP器件在电子,光子和能量收集应用中奠定基础。 基于III-N半导体的各种多功能和/或更高性能的MEP器件将通过利用柔性异质结构中的电子和光学特性与机械力之间的相互作用来开发。 柔性高电子迁移率晶体管的基本特性与控制弯曲应变的变化将通过建模和实验研究,以证明主动极化工程的概念。 技术方法和任务包括(1)具有各种曲率半径的器件模拟,(2)开发用于可弯曲器件的高保真制造工艺,以及(3)开发用于MEP器件操作的物理模型。 该项目旨在生产概念验证的积极极化工程电子器件和相关的新器件物理,以展示新技术平台的潜力。 MEP器件提供了从根本上改变对III-N半导体器件的理解和应用的潜力,从而创造出新型器件和系统。 新的设备物理和建模结果,包括静态和动态外部应变的影响,将提供一个理论背景,这些设备的各种applicationsThis奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulation of the two-dimensional electron gas channel in flexible AlGaN/GaN high-electron-mobility transistors by mechanical bending
- DOI:10.1063/1.5142546
- 发表时间:2020-03
- 期刊:
- 影响因子:4
- 作者:Weijie Wang;Jie Chen;J. S. Lundh;Shahab Shervin;S. Oh;S. Pouladi;Zhoulyu Rao;Ja Yeon Kim;M. Kwon;Xiaohang Li;Sukwon Choi;J. Ryou
- 通讯作者:Weijie Wang;Jie Chen;J. S. Lundh;Shahab Shervin;S. Oh;S. Pouladi;Zhoulyu Rao;Ja Yeon Kim;M. Kwon;Xiaohang Li;Sukwon Choi;J. Ryou
Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation
- DOI:10.1016/j.apenergy.2019.113856
- 发表时间:2019-12-01
- 期刊:
- 影响因子:11.2
- 作者:Chen, Jie;Nabulsi, Noor;Ryou, Jae-Hyun
- 通讯作者:Ryou, Jae-Hyun
Polarization modulation effect of BeO on AlGaN/GaN high-electron-mobility transistors
BeO对AlGaN/GaN高电子迁移率晶体管的偏振调制效应
- DOI:10.1063/1.5108832
- 发表时间:2019
- 期刊:
- 影响因子:4
- 作者:Wang, Weijie;Lee, Seung Min;Pouladi, Sara;Chen, Jie;Shervin, Shahab;Yoon, Seonno;Yum, Jung Hwan;Larsen, Eric S.;Bielawski, Christopher W.;Chatterjee, Bikramjit
- 通讯作者:Chatterjee, Bikramjit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae-Hyun Ryou其他文献
Growth of InGaN HBTs by MOCVD
- DOI:
10.1007/s11664-006-0123-z - 发表时间:
2006-04-01 - 期刊:
- 影响因子:2.500
- 作者:
Theodore Chung;Jae Limb;Jae-Hyun Ryou;Wonseok Lee;Peng Li;Dongwon Yoo;Xue-Bing Zhang;Shyh-Chiang Shen;Russell D. Dupuis;David Keogh;Peter Asbeck;Ben Chukung;Milton Feng;Dimitri Zakharov;Zusanne Lilienthal-Weber - 通讯作者:
Zusanne Lilienthal-Weber
Jae-Hyun Ryou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae-Hyun Ryou', 18)}}的其他基金
I-Corps: Flexible and Bendable Electronic and Photonic Device Platform
I-Corps:灵活且可弯曲的电子和光子器件平台
- 批准号:
1907626 - 财政年份:2018
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Flexible Thermoelectric Devices for Wearable Applications
适用于可穿戴应用的柔性热电器件
- 批准号:
2400221 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
- 批准号:
2322053 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Collaborative R&D
Flexible Air Source Heat pump for domestic heating decarbonisation (FASHION)
用于家庭供暖脱碳的灵活空气源热泵(时尚)
- 批准号:
EP/V042033/2 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
- 批准号:
23K24899 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant














{{item.name}}会员




