RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform

RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现

基本信息

  • 批准号:
    1842559
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platformSaikat Guha, Linran Fan, Dan Kilper, University of ArizonaPrinciples from quantum physics will enable far superior computational capabilities, better sensors and secure communications that are provably unbreakable by any adversary. Most of these advancements will be enabled by a new information resource called quantum entanglement. One of the most important building blocks to realize a quantum-enabled network information infrastructure that is capable of generating and distributing entanglement at high rates over long distances is the quantum repeater a quantum enabled processor that will sit at the node of the future quantum internet, augmenting the current-day network router. Our project?s goal is to research, develop and test a design for the quantum repeater, which will be realized compactly in an integrated photonic platform that produces complex many-photon entangled states on demand. The successful completion of this project will enable various applications of shared entanglement, including future-proof secure communications and multi-party secure computations, entanglement-assisted distributed sensors for far superior imaging and remote sensing, and will enable new science discoveries in areas such as chemistry and high-energy physics by letting us experiment with entangled states larger than any created so far. Even though our main thrust is to research a scalable on-chip design of a quantum repeater, the theoretical work will help us develop a deep understanding of building general and special-purpose quantum processors that use photons to encode the qubit, whereas the versatile nanophotonic platform we will design will be of value to various quantum enabled photonic information processing with applications to distributed sensing and distributed cloud-based quantum computing. Because of the highly-interdisciplinary nature of quantum information science, and our project team in particular, our education and outreach program will have a particularly broad impact in training a diverse and strong workforce at the intersection of physics, optical sciences, electrical and material science and engineering, computer network theory, and mathematics. The biggest challenge in building a quantum repeater has been the lack of good-quality quantum memories, high-rate good-fidelity matter-photon entanglement sources, and high-efficiency quantum-state-preserving frequency interconversion so as to make a telecom-wavelength quantum photon be compatible with the quantum storage and processing units. Our project?s goal is to research and develop a design of a quantum repeater that does not need quantum memories or quantum interconversion, but uses an integrated photonic source of locally-generated complex entangled states of many photonic modes to replace the action of the quantum memory by providing virtual storage of a logical quantum bit (qubit) using quantum error correction against photon loss. Such repeaters, known as all-photonic repeaters, have been proposed and recently researched by members of our team. But existing work on such repeaters need millions of near-perfect single-photon sources and detectors, along with extremely low-loss linear-optical waveguides be supplied at each repeater node. Our key insight is to develop an alternative scheme that leverages recently-demonstrated photonic multi-mode-squeezed entangled states of thousands of modes as the cluster source, but built compactly on a hybrid Aluminum Nitride - Silicon photonic platform, and use photon number detection on a subset of those modes to cast that into a universal-quantum-capable coded cluster state and develop a new logical qubit encoding into that "non-Gaussian" cluster state in a so-called Schrodinger-cat-like qubit basis. The goals of this project are: (1) establishing the theoretical design principles of a technologically-feasible all-photonic quantum repeater based on a continuous-variable (CV) entangled cluster source, (2) developing a compact, versatile integrated nanophotonic platform for generating and manipulating CV cluster states, (3) realizing direct on-demand generation of non-Gaussian universal clusters at high rates, and (4) the first measurement of entanglement distribution over one quantum repeater link that exceeds the fundamental direct-transmission rate upper limit for entanglement generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
RAISE-EQuIP:在可扩展的混合氮化铝和硅纳米光子平台上,通过非高斯团簇态实现长距离量子通信的量子中继器Saikat Guha、Linran Fan、Dan Kilper,亚利桑那大学量子物理学原理将实现远为上级的计算能力、更好的传感器和安全通信,任何对手都无法破解。这些进步中的大多数将由一种名为量子纠缠的新信息资源实现。实现量子网络信息基础设施的最重要的构建模块之一,能够在长距离上以高速率产生和分发纠缠,是量子中继器,这是一个量子处理器,将位于未来量子互联网的节点,增强当前的网络路由器。我们的计划?的目标是研究,开发和测试量子中继器的设计,这将在一个集成的光子平台上实现,该平台可以根据需要产生复杂的多光子纠缠态。该项目的成功完成将使共享纠缠的各种应用成为可能,包括面向未来的安全通信和多方安全计算,用于远上级成像和遥感的纠缠辅助分布式传感器,并将使化学和高能物理等领域的新科学发现成为可能,让我们实验比迄今为止创造的任何纠缠态都大。尽管我们的主要目标是研究量子中继器的可扩展芯片设计,但理论工作将帮助我们深入了解如何构建使用光子编码量子位的通用和专用量子处理器,而我们将设计的多功能纳米光子平台将对各种量子使能的光子信息处理具有价值,并应用于分布式传感和分布式云,基于量子计算。由于量子信息科学的高度跨学科性质,特别是我们的项目团队,我们的教育和推广计划将在物理学,光学科学,电气和材料科学与工程,计算机网络理论和数学的交叉领域培养多样化和强大的劳动力方面产生特别广泛的影响。构建量子中继器的最大挑战是缺乏高质量的量子存储器,高速率的高保真物质光子纠缠源,以及高效的量子状态保持频率互转换,以便使电信波长的量子光子与量子存储和处理单元兼容。我们的计划?的目标是研究和开发一种量子中继器的设计,该中继器不需要量子存储器或量子相互转换,而是使用多个光子模式的本地生成的复杂纠缠态的集成光子源,通过使用针对光子丢失的量子纠错来提供逻辑量子比特(qubit)的虚拟存储来代替量子存储器的作用。这样的中继器,被称为全光子中继器,已经提出,最近由我们的团队成员研究。但是,现有的工作,这样的中继器需要数以百万计的近乎完美的单光子源和探测器,沿着极低损耗的线性光波导被提供在每个中继器节点。我们的关键见解是开发一种替代方案,该方案利用最近展示的数千种模式的光子多模压缩纠缠态作为簇源,但复杂地构建在混合氮化铝-硅光子平台上,并在这些模式的子集上使用光子数检测,将其转换为具有通用量子能力的编码簇状态,并开发一种新的逻辑量子比特编码为“非高斯”在所谓的薛定谔猫类量子比特基础上的集群状态。该项目的目标是:(1)建立技术上可行的基于连续变量(CV)纠缠团簇源的全光子量子中继器的理论设计原理,(2)开发用于产生和操纵CV团簇态的紧凑、通用的集成纳米光子平台,(3)实现非高斯普适团簇的高速率直接按需产生,以及(4)首次测量了一个量子中继器链路上的纠缠分布,超过了纠缠产生的基本直接传输速率上限。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saikat Guha其他文献

Lower bounds on bipartite entanglement in noisy graph states
噪声图状态下二分纠缠的下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aqil Sajjad;Eneet Kaur;K. Goodenough;Don Towsley;Saikat Guha
  • 通讯作者:
    Saikat Guha
Spread-photon architecture for quantum-secure communications
用于量子安全通信的扩展光子架构
  • DOI:
    10.1109/ipc57732.2023.10360759
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael S. Bullock;Wesley Webb;Samuel H. Knarr;Timothy C. Burt;Jim A. Drakes;Victor G. Bucklew;Saikat Guha;Boulat A. Bash
  • 通讯作者:
    Boulat A. Bash
Towards imaging-based quantum optomechanics
迈向基于成像的量子光力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Pluchar;Wenhua He;Morgan E. Choi;Jack Manley;Nico Deshler;Saikat Guha;Dalziel J. Wilson
  • 通讯作者:
    Dalziel J. Wilson
Distribution of entanglement in two-dimensional square grid network
二维方格网络中纠缠的分布
Multi-aperture telescopes at the quantum limit of superresolution imaging : Detecting subRayleigh object near a star
  • DOI:
    10.1016/j.actaastro.2024.09.064
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amit Kumar Jha;Stephen Fleming;Nicolas Deshler;Aqil Sajjad;Mark Neifeld;Amit Ashok;Saikat Guha
  • 通讯作者:
    Saikat Guha

Saikat Guha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saikat Guha', 18)}}的其他基金

NSF Engineering Research Center for Quantum Networks (CQN)
NSF 量子网络工程研究中心 (CQN)
  • 批准号:
    1941583
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CNS Core: Medium: Design and Analysis of Quantum Networks for Entanglement Distribution
合作研究: CNS 核心:媒介:纠缠分布的量子网络设计与分析
  • 批准号:
    1955834
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Planning Grant: Engineering Research Center for Photonic Quantum Networks (PQN)
规划资助:光子量子网络工程研究中心(PQN)
  • 批准号:
    1840389
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
  • 批准号:
    2328774
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
  • 批准号:
    1842655
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
  • 批准号:
    1842641
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip
RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统
  • 批准号:
    1842692
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
"EQUIP" (Embedded Quantum Technology for Information Protection).
“EQUIP”(用于信息保护的嵌入式量子技术)。
  • 批准号:
    EP/R02314X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
RAISE-EQuIP: Integrated Higher-Dimensional Quantum Photonic Platform
RAISE-EQuIP:集成高维量子光子平台
  • 批准号:
    1842612
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
  • 批准号:
    1842691
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Integrated Silicon Photonics Platforms for Scalable Quantum Systems
RAISE-EQuIP:用于可扩展量子系统的集成硅光子平台
  • 批准号:
    1842712
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: A Chip-integrated Platform for Photon-Efficient Quantum Communications
RAISE-EQuIP:光子高效量子通信的芯片集成平台
  • 批准号:
    1842680
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Embedded Quantum Technologies for Information Protection (EQUIP)
用于信息保护的嵌入式量子技术 (EQUIP)
  • 批准号:
    103869
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了