RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip

RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统

基本信息

  • 批准号:
    1842692
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The amount of new data generated by humanity in the past year exceeds that created in all of human history before. The processing demands of this data are driving the continued need for greater computational power, in domains including big data analytics, artificial intelligence, and augmented reality, serving technologies including personal, medical, research, engineering, finance, and weather prediction. As "Moore's Law" of the semiconductor industry - which has guaranteed continued advance of computing power in the last 50 years - has ground to a halt in the past decade, new computational paradigms are being sought to remedy this dire situation. Quantum information technology is the new and ultimate frontier for signal processing and computing and leverages the unintuitive laws of our universe that hold on small scales. 50-100 qubit processors have been developed by Intel, IBM and Google, but quantum optical networks, needed to network them into "quantum data centers" in a way similar to their conventional analogues, are missing. This project aims to fill that gap by developing a new electronic-photonic chip technology and framework to allow creation of electronic-photonic quantum systems-on-chip (epQSoCs). epQSoCs combine light, electronic circuits, and quantum functions on a single microchip that can provide a widely deployable technology platform for quantum networks. The project will combine interdisciplinary expertise in photonics, electronic systems, and quantum communications to demonstrate the first epQSoC. A single-chip, "wall-plug" source of quantum correlated photon pairs, this epQSoC is a fundamental building block for more complex epQSoCs and for quantum networks. By integrating several components and novel capabilities never previously integrated in a single chip, this source will provide new levels of photon-pair source performance. The interdisciplinary project team will also educate a new generation of engineers in this emerging new technology area to foster innovation, excellence and global leadership in the United States.A "wall plug" single-chip source of photon pairs, a fundamental building block of most quantum photonic systems, will be demonstrated having a high efficiency, rate and reconfigurability to produce factorizable quantum states and allow heralding of pure single photons. No such integrated device exists despite the fact that a rack-mounted fiber-nonlinearity-based source of this kind for lab use has been commercialized for almost a decade. The proposed project aims to change the quantum technology landscape with the demonstration of a fully integrated single-chip quantum pair source system. The chip photonic circuit will contain photonic elements for pre- and post-source linear pump filtering, a resonant nonlinear pair generator, pump pulse carver to allow active matching of the pump pulse length to the source's resonant bandwidth in order to control the produced photons joint spectral intensity (to yield a factorizable or other engineered biphoton states), and an ultra-low loss interface to fiber. The proposed approach addresses a number of challenges that arise in integration, on-chip filtering, and real-time control. In addition to standalone operation, the pair source will be the first implementation of an electronic-photonic quantum system-on-chip (epQSoC) and a key building block for more complex integrated quantum systems. The proposed epQSoCs will be implemented in a commercial 45nm CMOS electronic-photonic platform (with potential for integrating single-photon detectors on chip as well). The project will create the technology framework (block libraries, tools, models and design methodologies) for low-cost, rapid innovation and design of sophisticated epQSoCs. This framework, along with associated educational materials and experiences will help create a new crop of engineers that are capable of tackling the complex, multidisciplinary nature of quantum information systems. Educational and outreach activities will provide exposure and training to a new generation of students and future leaders in this field, with special focus on underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类在过去一年中产生的新数据量超过了人类历史上所有的数据量。 这些数据的处理需求正在推动对更大计算能力的持续需求,包括大数据分析,人工智能和增强现实,服务于个人,医疗,研究,工程,金融和天气预测等技术。 由于半导体工业的“摩尔定律”--在过去50年中保证了计算能力的持续发展--在过去十年中已经停止,人们正在寻求新的计算范式来补救这种可怕的局面。 量子信息技术是信号处理和计算的新的和最终的前沿,并利用了我们宇宙中在小尺度上的非直观定律。 英特尔、IBM和谷歌已经开发出了50-100个量子比特的处理器,但是缺少量子光学网络,需要以类似于传统类似物的方式将它们连接到“量子数据中心”。 该项目旨在通过开发新的电子光子芯片技术和框架来填补这一空白,以创建电子光子量子系统芯片(epQSoC)。 epQSoC在单个微芯片上联合收割机光、电子电路和量子功能,可以为量子网络提供可广泛部署的技术平台。 该项目将结合联合收割机在光子学、电子系统和量子通信领域的跨学科专业知识,展示首个epQSoC。 作为量子相关光子对的单芯片“插墙式”源,该epQSoC是更复杂的epQSoC和量子网络的基本构建模块。 通过集成多个组件和以前从未集成在单个芯片中的新功能,该源将提供新水平的光子对源性能。 跨学科项目团队还将在这一新兴的新技术领域教育新一代工程师,以促进美国的创新,卓越和全球领导地位。“墙塞”单芯片光子对源,大多数量子光子系统的基本组成部分,将被证明具有高效率,速率和可重构性,以产生可因子化的量子态,并允许预示纯单光子。 没有这样的集成设备存在,尽管事实上,这种用于实验室使用的机架安装的基于光纤非线性的源已经商业化了近十年。该项目旨在通过展示完全集成的单芯片量子对源系统来改变量子技术的格局。芯片光子电路将包含用于源前和源后线性泵浦滤波的光子元件、谐振非线性对发生器、允许泵浦脉冲长度与源的谐振带宽主动匹配以便控制所产生的光子联合光谱强度(以产生可因子分解的或其他工程化的双光子状态)的泵浦脉冲雕刻器、以及到光纤的超低损耗接口。所提出的方法解决了集成,片上滤波和实时控制中出现的一些挑战。除了独立操作外,对源将是电子-光子量子片上系统(epQSoC)的第一个实现,也是更复杂集成量子系统的关键构建块。 所提出的epQSoC将在商用45 nm CMOS电子光子平台上实现(也有可能在芯片上集成单光子探测器)。该项目将创建技术框架(块库,工具,模型和设计方法),用于低成本,快速创新和设计复杂的epQSoC。这个框架,沿着相关的教育材料和经验,将有助于培养一批新的工程师,他们能够解决量子信息系统的复杂性和多学科性。教育和推广活动将为新一代学生和该领域未来的领导者提供接触和培训,特别关注代表性不足的学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum-Correlated Photon-Pair Source with Integrated Feedback Control in 45 nm CMOS
45 nm CMOS 中具有集成反馈控制的量子相关光子对源
Efficient, Narrow Profile Waveguide Crossings Based on Rapid Adiabatic Coupling
Fast-Tuning Adiabatic Microrings for CROW Filters and Athermal WDM Receivers in a 45 nm SOI CMOS Process
用于采用 45 nm SOI CMOS 工艺的 CROW 滤波器和无热 WDM 接收器的快速调谐绝热微环
  • DOI:
    10.1364/cleo_si.2022.sf4m.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kramnik, Danielius;Fargas Cabanillas, Josep M.;Gluhović, Ðorđe;Buchbinder, Sidney;Popović, Miloš A.;Stojanović, Vladimir
  • 通讯作者:
    Stojanović, Vladimir
Electronic-photonic quantum systems on-chip
片上电子光子量子系统
Photon-Pair Generation in a 45 nm CMOS Microring Cavity: Impact of Spontaneous Raman Scattering
45 nm CMOS 微环腔中的光子对生成:自发拉曼散射的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milos Popovic其他文献

Keeping Friends Close, and Their Oil Closer: Rethinking the Role of the Shanghai Cooperation Organization in China's Strive for Energy Security in Kazakhstan
拉近朋友,拉近石油:重新思考上海合作组织在中国争取哈萨克斯坦能源安全中的作用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
The landscape of high-affinity human antibodies against intratumoral antigens
针对肿瘤内抗原的高亲和力人类抗体的前景
  • DOI:
    10.1101/2021.02.06.430058
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Rakocevic;I. Glotova;I. de Santiago;B. Ç. Toptas;Milena Popovic;Milos Popovic;D. Leone;A. Stachyra;R. Rozenfeld;Deniz Kural;D. Biasci
  • 通讯作者:
    D. Biasci
Special collection in association with the 2024 International Conference on Aging, Innovation and Rehabilitation
  • DOI:
    10.1186/s12938-025-01427-z
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Babak Taati;Milos Popovic
  • 通讯作者:
    Milos Popovic
Fragile Proxies: Explaining Rebel Defection Against Their State Sponsors
脆弱的代理人:解释叛乱分子背叛其国家赞助者的原因
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Poster 42 Impact of increasing intensity of occupational therapy on functional outcomes in sub-acute SCI
  • DOI:
    10.1016/j.apmr.2013.08.247
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic

Milos Popovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milos Popovic', 18)}}的其他基金

Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328946
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
  • 批准号:
    2023751
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1611086
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1701596
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Molding Optical Field Patterns for Highly Efficient Design of Strong-Confinement Photonic Devices
用于强约束光子器件高效设计的模塑光场图案
  • 批准号:
    1128709
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
  • 批准号:
    2328774
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Learning health systems: fostering participatory learning and action to equip rural health workers as change agents for maternal and newborn care.
学习卫生系统:促进参与式学习和行动,使农村卫生工作者成为孕产妇和新生儿护理的变革推动者。
  • 批准号:
    MR/V020951/1
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
MRC Equip: A bioenergetics platform to facilitate research in metabolic pathologies
MRC Equip:促进代谢病理学研究的生物能学平台
  • 批准号:
    MR/X01214X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
DIYWomen - workshops which equip and empower women with practical skills, while engaging with employers to create more diverse and inclusive engineering, construction and trades workforces.
DIYWomen - 为女性提供实用技能的研讨会,同时与雇主合作打造更加多元化和包容性的工程、建筑和贸易劳动力。
  • 批准号:
    10015882
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Collaborative R&D
To use insights from social science identity research to build a toolkit to equip organisations with new behaviours as they return to work post Covid-19.
利用社会科学身份研究的见解构建一个工具包,为组织在 Covid-19 后重返工作岗位时提供新的行为方式。
  • 批准号:
    79513
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Small Business Research Initiative
Enhancing Quality in Pediatrics Sepsis with Shock Prediction and Early Electronic Decision Support (EQUIP with SPEED)
通过电击预测和早期电子决策支持 (EQUIP with SPEED) 提高儿科脓毒症治疗质量
  • 批准号:
    10224610
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
  • 批准号:
    1842655
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform
RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现
  • 批准号:
    1842559
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
  • 批准号:
    1842641
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
"EQUIP" (Embedded Quantum Technology for Information Protection).
“EQUIP”(用于信息保护的嵌入式量子技术)。
  • 批准号:
    EP/R02314X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了