SBIR Phase I: Real-Time Decision Making Software for Wastewater Treatment Operators
SBIR 第一阶段:污水处理运营商实时决策软件
基本信息
- 批准号:1843020
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is the development of a new generation of machine learning/artificial intelligence tools for improving the efficiency and effectiveness of wastewater treatment systems. Over $160 billion is spent on sewer fees in the U.S., with year-to-year costs increasing by over 5% for many users. Even with the significant resources spent on wastewater treatment, 3 to 10 billion gallons of untreated sewage are still released from US wastewater treatment plants each year. Development of technologies leveraging machine learning and artificial intelligence to better manage complex biological and chemical processes will not only have a major impact on the $91 billion wastewater treatment system control market, but on other biochemical-dependent industries as well. In addition to reducing the societal financial burden associated with wastewater treatment, this technology will improve the sustainability of the infrastructure and will limit the environmental impact of human activities. Wastewater operators will be able to utilize this technology's real-time decision-making software to significantly reduce their municipal facility operating costs and decrease environmental pollution caused by non-compliance and overflows.This SBIR Phase I project proposes to develop real-time software for assisting wastewater treatment operators with decision-making for improved efficiency and effectiveness. Existing commercial simulation solutions for control and monitoring do not accurately reflect actual treatment plant behavior, do not model biological processes, do not require extensive configuration to be used, and do not respond rapidly to changes in plant performance. This project improves upon current approaches by linking biological components of the wastewater treatment plant with historical data using machine learning techniques. Phase I research will focus on development of: 1) an influent flow/composition model allowing accurate model inputs; 2) a full-scale hybrid model combining physical process and machine-learning bioprocess modules able to accurately predict plant effluent flow and quality, and; 3) a software platform to manage the model processes. The technical approach will focus on balancing the complexity of incorporating large-scale genomic data as part of a non-linear treatment process while ensuring high accuracy and maintaining model stability. Anticipated technical results will provide waste operators a software product that develops full-scale treatment plant models in real-time, using historical and current plant data, enabling significantly improved operational decision-making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)项目的更广泛的影响/商业潜力是开发新一代机器学习/人工智能工具,以提高废水处理系统的效率和有效性。美国的下水道费用超过1600亿美元,对于许多用户来说,每年的成本增加超过5%。即使在废水处理上花费了大量资源,每年仍有30亿至100亿加仑未经处理的污水从美国废水处理厂释放出来。开发利用机器学习和人工智能来更好地管理复杂的生物和化学过程的技术,不仅会对910亿美元的废水处理系统控制市场产生重大影响,还会对其他依赖生物化学的行业产生重大影响。除了减轻与废水处理相关的社会经济负担外,该技术还将提高基础设施的可持续性,并限制人类活动对环境的影响。污水处理运营商将能够利用该技术的实时决策软件来大幅降低市政设施的运营成本,并减少因违规和溢出而造成的环境污染。SBIR第一期项目旨在开发实时软件,以帮助污水处理运营商进行决策,从而提高效率和效果。现有的用于控制和监测的商业模拟解决方案不能准确地反映实际的处理厂行为,不能对生物过程进行建模,不需要使用大量的配置,并且不能快速响应工厂性能的变化。该项目通过使用机器学习技术将废水处理厂的生物成分与历史数据联系起来,改进了当前的方法。第一阶段的研究将集中于开发:1)允许准确模型输入的进水流量/组成模型; 2)结合物理过程和机器学习生物过程模块的全尺寸混合模型,能够准确预测工厂流出物流量和质量; 3)管理模型过程的软件平台。该技术方法将侧重于平衡将大规模基因组数据作为非线性处理过程的一部分的复杂性,同时确保高准确性和保持模型稳定性。预期的技术成果将为废物运营商提供一个软件产品,该产品利用历史和当前工厂数据实时开发全尺寸处理厂模型,从而显著改善运营决策。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keaton Lesnik其他文献
Keaton Lesnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keaton Lesnik', 18)}}的其他基金
SBIR Phase II: Real-Time Decision Making Software for Wastewater Treatment Operators
SBIR 第二阶段:污水处理运营商实时决策软件
- 批准号:
2025902 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
- 批准号:
2322210 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Real-time computer automated identification and quantification of insects entering the SolaRid insect control device (ICD)
SBIR 第二阶段:实时计算机自动识别和量化进入 SolaRid 昆虫控制装置 (ICD) 的昆虫
- 批准号:
2247237 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Real-Time Allergen Detection Technology for Dietary Proteins Transferred to Human Milk
SBIR 第一阶段:转移到母乳中的膳食蛋白的实时过敏原检测技术
- 批准号:
2321861 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Real-Time Artificial Intelligence (AI) Bidirectional American Sign Language (ASL) Communication System
SBIR第一阶段:实时人工智能(AI)双向美国手语(ASL)通信系统
- 批准号:
2213235 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: A real-time precision nutrient analysis and management system for hydroponic farming operations
SBIR 第一阶段:用于水培农业作业的实时精确养分分析和管理系统
- 批准号:
2210046 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Wearable System for Stress Management via Real Time Stress Tracking and Biofeedback
SBIR 第一阶段:通过实时压力跟踪和生物反馈进行压力管理的可穿戴系统
- 批准号:
2212935 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Video-to-speech software application to provide real-time, noninvasive, natural voice restoration for voiceless individuals
SBIR 第一阶段:视频转语音软件应用程序,为失声者提供实时、无创、自然的语音恢复
- 批准号:
2136629 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Haptic Glove for Real-Time Speech Comprehension
SBIR 第一阶段:用于实时语音理解的触觉手套
- 批准号:
2112296 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Estimating, Learning, and Optimizing Real-Time Grid Emissions
SBIR 第二阶段:估计、学习和优化实时电网排放
- 批准号:
2051953 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




