SBIR Phase I: Machine learning emulators of weather and hydroclimate models for operational and financial risk assessment
SBIR 第一阶段:用于运营和财务风险评估的天气和水文气候模型的机器学习模拟器
基本信息
- 批准号:1843103
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is that it will provide a concrete implementation with practical commercial applications in renewable energy and climate-related risk of a hybrid, ultrafast physics-informed machine learning technology that emulates complex numerical physics-based climate/weather models. Physics-based (hydro)climate/weather simulation models are used across trillion-dollar industries of utmost societal interest, from agriculture to insurance to energy to logistics. Faster (by 3-5 orders of magnitude), hyperlocal, large-scale estimates of physical climate/environmental parameters that are difficult/expensive or even impossible to measure empirically (such as snow-water equivalent), integrating best-available real-time observational remote-sensing data, can both streamline existing applications (faster hydropower scenario forecasting), as well as enable new capabilities and products (e.g., real-time storm risk response or automated parametric insurance contracts). The proposed R&D effort will illustrate how scientific modeling, including of climate, can leverage both the body of knowledge embedded in numerical simulation models, which the scientific community has spent more than seven decades building, as well as the high speed and natural capability of novel AI and machine learning models to process novel sources of observational data (particularly remote-sensing) on the natural environment. This Small Business Innovation Research (SBIR) Phase I project addresses the need in the renewable energy and insurance industries for fast, high-resolution (in space and time) estimates of the hazard profiles of environmental and climate/weather parameters informed by real-time observational data. The project aims to provide a first proof-of-concept that a commercial-grade hybrid physics-informed AI technology can be developed for estimating relevant climate and weather parameters, starting with hydroclimate modeling. The R&D effort proposed will focus on 1) developing and validating a generative deep learning model trained on numerical hydroclimate simulation data as well as observational meteorological data; 2) identifying and benchmarking best-practices for ensuring stable training and updating of the model, observational/simulation data requirements, and computational resources needed; and 3) designing and developing streamlined model access patterns and web-based API functionality for use cases relevant to renewable energy and insurance/risk modeling use-cases. The envisioned proof-of-concept is a modular computational system running natively on GPU hardware that will allow creating gridded datasets of physical parameters such as snow water equivalent, precipitation, or water level, as well as their associated probability curves for geographical locations and time horizons of interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小型企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力是,它将提供一个具体的实施,在可再生能源和气候相关风险方面具有实际的商业应用,这是一种混合的、超快的物理信息机器学习技术,模拟基于复杂的基于数值物理的气候/天气模型。从农业到保险,从能源到物流,基于物理学的(水力)气候/天气模拟模型被用于具有最大社会利益的数万亿美元的行业。更快(提高3-5个数量级)、对难以/昂贵或甚至不可能通过经验测量的实际气候/环境参数(如雪水当量)的超局部大规模估计,结合现有的最佳实时观测遥感数据,既可以简化现有的应用程序(更快地预测水电情景),又可以实现新的能力和产品(例如,实时风暴风险应对或自动化参数保险合同)。拟议的研发工作将展示科学建模,包括气候建模,如何利用科学界花了70多年构建的数值模拟模型中嵌入的知识体系,以及新型人工智能和机器学习模型的高速和自然能力,以处理关于自然环境的新观测数据来源(尤其是遥感数据)。小型企业创新研究(SBIR)第一阶段项目旨在满足可再生能源和保险行业对通过实时观测数据快速、高分辨率(在空间和时间上)估计环境和气候/天气参数的危害概况的需求。该项目旨在提供第一个概念验证,即可以开发一种商业级混合物理信息人工智能技术,以从水气候建模开始估计相关的气候和天气参数。拟议的研发工作将侧重于:1)开发和验证以数值水文气候模拟数据和观测气象数据为基础的生成性深度学习模型;2)确定和确定最佳做法,以确保稳定地培训和更新模型、观测/模拟数据要求和所需的计算资源;以及3)为与可再生能源和保险/风险建模用例相关的用例设计和开发简化的模型访问模式和基于网络的API功能。设想的概念验证是一个在GPU硬件上本地运行的模块化计算系统,它将允许创建物理参数的网格数据集,如雪水当量、降水或水位,以及它们在地理位置和感兴趣的时间范围的相关概率曲线。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emulating numeric hydroclimate models with physics-informed conditional generative adversarial networks.
使用基于物理的条件生成对抗网络模拟数字水文气候模型。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Manepalli, A;Albert, A;Rhoades, A;Feldman, D;Prabhat, M.
- 通讯作者:Prabhat, M.
Downscaling numerical weather models with conditional generative adversarial networks.
使用条件生成对抗网络缩小数值天气模型。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Singh, A;Albert, A;White, B.
- 通讯作者:White, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Albert其他文献
Steptacular: An incentive mechanism for promoting wellness
Steptaular:促进健康的激励机制
- DOI:
10.1109/comsnets.2012.6151377 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Naini Gomes;Deepak Merugu;Gearóid O'Brien;Chinmoy Mandayam;J. Yue;Berk Atikoglu;Adrian Albert;Norihiro Fukumoto;Huan Liu;B. Prabhakar;D. Wischik - 通讯作者:
D. Wischik
On Rings with Involution
- DOI:
10.4153/cjm-1974-074-5 - 发表时间:
1974-08 - 期刊:
- 影响因子:0
- 作者:
Adrian Albert - 通讯作者:
Adrian Albert
DISAGGREGATION : THE HOLY GRAIL OF ENERGY EFFICIENCY ?
分解:能源效率的圣杯?
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
K. Armel;Abhaykumar L. Gupta;G. Shrimali;Adrian Albert - 通讯作者:
Adrian Albert
Adrian Albert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Sown To Grow - Measuring Growth in Trusting Relationships between Students and Educators with Natural Language Processing and Machine Learning Technologies
SBIR 第一阶段:播种成长 - 使用自然语言处理和机器学习技术衡量学生和教育工作者之间信任关系的增长
- 批准号:
2322340 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Quantification of Operative Performance via Simulated Surgery, Capacitive Sensing, and Machine Learning to Improve Surgeon Performance & Medical Device Develop
SBIR 第二阶段:通过模拟手术、电容传感和机器学习量化手术表现,以提高外科医生的表现
- 批准号:
2223976 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A Novel Human Machine Interface for Assistive Robots
SBIR 第二阶段:辅助机器人的新型人机界面
- 批准号:
2223169 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
- 批准号:
2304498 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Using ChatGPT and Machine Learning to Power Positive Change among Justice Involved Youth
SBIR 第一阶段:利用 ChatGPT 和机器学习推动参与正义的青少年发生积极变化
- 批准号:
2333168 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Accelerating R&D through Streamlined Machine Learning Algorithms for Small Data Applications in Advanced Manufacturing
SBIR 第二阶段:加速 R
- 批准号:
2325045 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Development of a Machine Learning System to Identify Streptococcal Pharyngitis with a Smartphone Image
SBIR 第一阶段:开发机器学习系统,通过智能手机图像识别链球菌性咽炎
- 批准号:
2304268 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Secure Image Recognition and Machine Learning Using Advanced Cryptography
SBIR 第一阶段:使用高级加密技术进行安全图像识别和机器学习
- 批准号:
2304348 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant