SBIR Phase I: Sown To Grow - Measuring Growth in Trusting Relationships between Students and Educators with Natural Language Processing and Machine Learning Technologies

SBIR 第一阶段:播种成长 - 使用自然语言处理和机器学习技术衡量学生和教育工作者之间信任关系的增长

基本信息

  • 批准号:
    2322340
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project seeks to help educators to develop deeper relationships with their students, assist schools in identifying students who lack strong relationships and need additional support, and help school districts understand the emotional health and relationship strength of their schools. Student emotional well-being, student absenteeism, and teacher burnout are some of the most pressing problems facing K-12 education today. A significant body of research shows that positive student-teacher relationships help students adjust to school, contribute to social skill development, promote academic performance and resiliency, decrease absenteeism, and foster engagement. Schools struggle with relationship building at scale - it takes time to form connections, not all students are willing to open up, and teachers need help and training on understanding and responding to the varied experiences and needs of their students. This project, if successful, will help schools address these challenges at scale. Additionally, the data from this project will help teachers contribute to learning science and behavioral health research, while providing a blueprint to the education technology industry on how to implement advanced technology in an ethical and transparent manner that augments, rather than replaces, existing education structures and systems.This project builds an innovative technology that will understand and measure the strength of the student-teacher relationships at scale. The technology will develop new frameworks for defining trusting relationships based on the depth of student reflections, teacher responses, and how responses change and grow week over week. Advanced natural language processing (NLP) and machine learning (ML) techniques will model these frameworks based on real student-teacher interactions. NLP typically focuses on using models to understand text inputs and predict/generate responses. Through this project, the team seeks to use new NLP/ML techniques to understand and assess the interactions and levels of trust between individuals. The NLP/ML models will analyze the depth of student reflections and interpret the nature of the teacher responses separately. The output of these two models will then be combined to understand the strength of student-teacher relationship by creating a student-teacher relationship trust metric. This metric will help understand student-teacher relationships at scale across schools and districts all over the country.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的更广泛/商业影响旨在帮助教育者与学生建立更深层的关系,帮助学校确定缺乏牢固关系并需要额外支持的学生,并帮助学区了解学校的情感健康和关系的力量。当今K-12教育面临的一些最紧迫的问题,学生的情感幸福感,学生缺勤和教师倦怠是最紧迫的问题。大量的研究表明,积极的学生教师关系可以帮助学生适应学校,为社会技能发展做出贡献,促进学习成绩和韧性,降低缺勤和促进参与。学校在大规模建立关系方面挣扎 - 需要时间才能建立联系,并非所有学生都愿意开放,并且老师需要帮助和培训,以理解和回应学生的各种经验和需求。如果成功的话,该项目将帮助学校大规模应对这些挑战。此外,该项目的数据将有助于教师为学习科学和行为健康研究做出贡献,同时为教育技术行业提供有关如何以道德和透明的方式实施先进技术的蓝图,以增强而不是代替现有的教育结构和系统。该项目将建立一个创新的技术,以理解和衡量学生会关系的力量在规模上。该技术将开发新的框架,以根据学生的思考,教师回应的深度以及一周一周的变化和增长方式来定义信任关系。先进的自然语言处理(NLP)和机器学习(ML)技术将基于实际的学生教师互动对这些框架进行建模。 NLP通常专注于使用模型来了解文本输入并预测/生成响应。通过该项目,团队试图使用新的NLP/ML技术来理解和评估个人之间信任的互动和水平。 NLP/ML模型将分析学生思考的深度,并分别解释教师回答的性质。然后,将组合这两个模型的输出,以通过建立学生教师关系信任度量来了解学生教师关系的实力。该指标将有助于了解全国各地各个学校的学生教师关系。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Disha Gupta其他文献

41 - Combined Transcranial Direct Current Stimulation and Upper Extremity Robotic Therapy Improves Upper Extremity Function in an Adult with Cerebral Palsy: A Pilot Study
  • DOI:
    10.1016/j.brs.2016.11.059
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kathleen M. Friel;Peter Lee;Disha Gupta;Hsing-Ching Kuo;Ana R.P. Smorenburg;Dylan J. Edwards
  • 通讯作者:
    Dylan J. Edwards
Objective Extraction of EEG Features to Predict Recovery and Determine Awareness/Unawareness After Brain Injury
  • DOI:
    10.1016/j.apmr.2018.08.048
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bart Zoltan;Debra Zeitlin;Disha Gupta;Gina Fiorenza;Glenn Seliger;Jonathan Wolpaw;Laura Tenteromano;N. Jeremy Hill;Theresa Vaughan
  • 通讯作者:
    Theresa Vaughan
AESTHETIC MANAGEMENT OF FRACTURED ENDODONTICALLY TREATED TOOTH- CASE REPORT
断裂牙髓治疗牙齿的美学管理——病例报告
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hada Singh Yajuvender;S. Wilson;Preeti Rajawat;S. Mathew;Disha Gupta;Daswani Dental
  • 通讯作者:
    Daswani Dental
Thanatophoric dysplasia: a rare entity
致死性发育不良:一种罕见的疾病
Systematic mining of analog series with related core structures in multi-target activity space
多目标活动空间中相关核心结构的类比序列系统挖掘

Disha Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
  • 批准号:
    32303043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
  • 批准号:
    32371612
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
  • 批准号:
    52307091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

UK involvement in LSST: Phase C (Imperial component)
英国参与 LSST:C 阶段(帝国部分)
  • 批准号:
    ST/X001326/1
  • 财政年份:
    2025
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了