SBIR Phase I: A Real-time Artificial Intelligence Dysplasia Detection (AIDD) system for Barrett's Esophagus and Early Esophageal Cancer
SBIR 第一阶段:针对巴雷特食管和早期食管癌的实时人工智能发育不良检测(AIDD)系统
基本信息
- 批准号:1843975
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to, through development of a Real-time Artificial Intelligence algorithm, bring expertise in endoscopic imaging interpretation to physicians taking care of patients at risk for esophageal cancer, to detect precancer earlier, and lower the cost of healthcare. Esophageal cancer is one of the fastest growing cancers in the US with a 6 fold increase in incidence in the last 4 decades. Most endoscopists are not trained well to detect pre-cancer in the esophagus as 5% have received dedicated advanced imaging training to identify dysplasia (advanced precancer) within Barrett's Esophagus. There are well-proven minimally invasive endoscopic treatments for dysplasia and early esophageal cancer that are 95% effective in providing cure to the patient. On the other hand, when cancer is caught at a later stage the only option is removal of the esophagus with surgery in combination with expensive chemotherapy and radiation. Creating this real-time Artificial Intelligence system will assist endoscopists to detect precancer earlier, prevent this deadly cancer and expand access to esophageal cancer screening to the community at large and also to the underserved community, who typically have fewer well-trained physicians.This Small Business Innovation Research (SBIR) Phase I project will develop the first system that can detect dysplasia in Barrett's Esophagus in real-time during endoscopy. This proposed research will expand on the company's preliminary work in detecting dysplastic lesions in colonoscopy and applying transfer learning methods to develop the first ever dysplasia-detection algorithm for upper endoscopy. It will initially be trained using static, annotated images, and will expand on the company's software platform to be able to eventually process video feeds, in real-time, from device makers without frame-drop or lag. The company has begun engaging with endoscopy OEMs to define metrics for success in running real-time algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小型企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力是,通过开发实时人工智能算法,将内窥镜成像解释的专业知识带给医生,以照顾有食管癌风险的患者,更早地检测癌前病变,并降低医疗保健成本。 食管癌是美国增长最快的癌症之一,在过去40年中发病率增加了6倍。大多数内窥镜医生没有接受过良好的培训来检测食管中的癌前病变,因为5%的内窥镜医生接受过专门的高级成像培训来识别巴雷特食管中的异型增生(晚期癌前病变)。对于异型增生和早期食管癌,有充分证明的微创内镜治疗方法,在为患者提供治愈方面有95%的有效性。另一方面,当癌症在后期被发现时,唯一的选择是手术切除食管,并结合昂贵的化疗和放疗。创建这种实时人工智能系统将有助于内窥镜医生更早地发现癌前病变,预防这种致命的癌症,并将食管癌筛查的范围扩大到整个社区以及服务不足的社区,这个小企业创新研究(SBIR)第一阶段项目将开发第一个可以在真实的中检测巴雷特食管发育不良的系统-内窥镜检查期间的时间。这项拟议的研究将扩大该公司在结肠镜检查中检测发育异常病变的初步工作,并应用迁移学习方法开发首个用于上消化道内窥镜检查的发育异常检测算法。它最初将使用静态的注释图像进行训练,并将在公司的软件平台上扩展,最终能够实时处理来自设备制造商的视频,而不会出现帧丢失或延迟。该公司已开始与内窥镜OEM合作,以定义运行实时算法的成功指标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ninh其他文献
IN-SITU HISTOLOGIC CLASSIFICATION OF DIMINUTIVE RECTOSIGMOID POLYPS USING A NOVEL MULTI-CLASS NEURAL NETWORK
- DOI:
10.1016/j.gie.2022.04.638 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Rani Berry;James Y. Han;James Requa;Andrew Ninh;Tyler Dao;William Karnes - 通讯作者:
William Karnes
299 – Video Validation of Small Bowel Convolutional Neural Networks (CNNS) in Identification of Anatomical Landmarks and Mucosal Abnormalities in Video Capsule Endoscopy
- DOI:
10.1016/s0016-5085(19)36931-8 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Felix H. Lui;Andrew Ninh;yash rusconi;James Requa;William E. Karnes - 通讯作者:
William E. Karnes
Andrew Ninh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
- 批准号:
2322210 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Real-time computer automated identification and quantification of insects entering the SolaRid insect control device (ICD)
SBIR 第二阶段:实时计算机自动识别和量化进入 SolaRid 昆虫控制装置 (ICD) 的昆虫
- 批准号:
2247237 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Real-Time Allergen Detection Technology for Dietary Proteins Transferred to Human Milk
SBIR 第一阶段:转移到母乳中的膳食蛋白的实时过敏原检测技术
- 批准号:
2321861 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Real-Time Artificial Intelligence (AI) Bidirectional American Sign Language (ASL) Communication System
SBIR第一阶段:实时人工智能(AI)双向美国手语(ASL)通信系统
- 批准号:
2213235 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: A real-time precision nutrient analysis and management system for hydroponic farming operations
SBIR 第一阶段:用于水培农业作业的实时精确养分分析和管理系统
- 批准号:
2210046 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Wearable System for Stress Management via Real Time Stress Tracking and Biofeedback
SBIR 第一阶段:通过实时压力跟踪和生物反馈进行压力管理的可穿戴系统
- 批准号:
2212935 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Video-to-speech software application to provide real-time, noninvasive, natural voice restoration for voiceless individuals
SBIR 第一阶段:视频转语音软件应用程序,为失声者提供实时、无创、自然的语音恢复
- 批准号:
2136629 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Haptic Glove for Real-Time Speech Comprehension
SBIR 第一阶段:用于实时语音理解的触觉手套
- 批准号:
2112296 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Estimating, Learning, and Optimizing Real-Time Grid Emissions
SBIR 第二阶段:估计、学习和优化实时电网排放
- 批准号:
2051953 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




