SBIR Phase I: Large Scale And Automated Unsupervised Machine Learning For Anomaly Detection
SBIR 第一阶段:用于异常检测的大规模自动化无监督机器学习
基本信息
- 批准号:1843988
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project will result from enabling businesses to process and extract insights from large unlabeled datasets, using machine learning with minimal human supervision, in application areas such as cyber security, precision medicine and predictive maintenance. Current deep learning approaches require large amounts of labeled data. Creation of labeled data is expensive, error prone and time consuming. The proposed software will provide fully automated capabilities for semi-supervised learning for anomaly detection in cyber security applications. All businesses ranging from large scale enterprises to boutique data science consulting firms will benefit from this project. The expected impact can range in the billions of dollars in the areas of cyber security and predictive maintenance, to name just two. More broadly the proposed technologies will enable both corporations and public institutions to harvest large datasets at minimal cost.This Small Business Innovation Research (SBIR) Phase I project will design, develop, and deploy high-performance computing (HPC) software for unsupervised learning and anomaly detection. In the last decades tremendous successes in machine learning have been achieved in the area of supervised learning that requires compilation of large datasets with labels (for example, grouping of pictures based on the individual depicted on the image). In contrast, unsupervised learning algorithms do not require labels and thus require minimal human participation. However, due to significant technical difficulties they have not been as successful as supervised learning algorithms. This software package circumvents these difficulties and opens the way to scaling unsupervised learning algorithms to large and complex datasets. The main research and development challenges that will be addressed in this project are the ability to integrate this new technology with real world complex datasets through the choice of the correct comparison function between the objects of the dataset and the fully automatic algorithm and algorithm parameter selection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力将来自于使企业能够在网络安全,精准医学和预测性维护等应用领域使用机器学习,在最少的人工监督下处理和提取大型未标记数据集的见解。 目前的深度学习方法需要大量的标记数据。 标记数据的创建是昂贵的、容易出错且耗时的。拟议的软件将为网络安全应用中的异常检测提供半监督学习的全自动化功能。从大型企业到精品数据科学咨询公司的所有企业都将从该项目中受益。在网络安全和预测性维护领域,预计影响可能达到数十亿美元,仅举两例。更广泛地说,拟议的技术将使企业和公共机构能够以最低的成本收集大型数据集。这个小企业创新研究(SBIR)第一阶段项目将设计,开发和部署高性能计算(HPC)软件,用于无监督学习和异常检测。在过去的几十年里,机器学习在监督学习领域取得了巨大的成功,这需要编译带有标签的大型数据集(例如,基于图像上描绘的个人对图片进行分组)。相比之下,无监督学习算法不需要标签,因此需要最少的人类参与。然而,由于存在重大技术困难,它们并不像监督学习算法那样成功。该软件包规避了这些困难,并开辟了将无监督学习算法扩展到大型复杂数据集的途径。 该项目将解决的主要研究和开发挑战是通过选择数据集对象之间的正确比较函数以及全自动算法和算法参数选择,将这项新技术与真实的世界复杂数据集集成的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vinay Rao其他文献
P029 VTE RISK WITH IBD PLUS ORAL CONTRACEPTIVES: ARE PATIENTS AWARE?
- DOI:
10.1053/j.gastro.2019.11.230 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Jenny Dave;Karan Chawla;Francis Carro-Cruz;Vinay Rao;Jessica Gibilisco;Scott Baumgartner;Katherine Negreira;Marie Borum - 通讯作者:
Marie Borum
Predicting the Impact of Race and Socioeconomic Status on Cranioplasty Materials and Outcomes
- DOI:
10.1016/j.wneu.2022.04.126 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Krissia M. Rivera Perla;Oliver Y. Tang;Victoria G. Zeyl;Rachel Lim;Vinay Rao;Steven A. Toms;Konstantina A. Svokos;Albert S. Woo - 通讯作者:
Albert S. Woo
Postnatal Sagittal Craniosynostosis: A Novel Presentation and Considerations in Diagnosis and Management
产后矢状颅缝早闭:诊断和治疗的新颖表现和注意事项
- DOI:
10.1097/scs.0000000000007599 - 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Vinay Rao;R. Ali;Lauren O. Roussel;Joseph W. Crozier;K. Svokos;A. Woo - 通讯作者:
A. Woo
P011 HIGH TIME: INCREASED INQUIRY ABOUT MARIJUANA USE IN IBD PATIENTS IS NECESSARY
- DOI:
10.1053/j.gastro.2019.11.207 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Scott Baumgartner;Vinay Rao;Ali Khan;Jenny Dave;Karan Chawla;Marie Borum - 通讯作者:
Marie Borum
P030 WHAT ABOUT DEPRESSION? INCREASED DISCUSSION BY GASTROENTEROLOGISTS MAY BE NEEDED.
- DOI:
10.1053/j.gastro.2019.11.231 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Katherine Negreira;Jessica Gibilisco;Vinay Rao;Jenny Dave;Marie Borum - 通讯作者:
Marie Borum
Vinay Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vinay Rao', 18)}}的其他基金
SBIR Phase I: Empowering Discovery of COVID-19 Vaccine through Large Scale Unsupervised Deeplearning for Electron Microscopy Data
SBIR 第一阶段:通过电子显微镜数据的大规模无监督深度学习促进 COVID-19 疫苗的发现
- 批准号:
2032548 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Rapid and Accurate Large Aperture Surface Metrology for Future High Speed Communication
SBIR 第一阶段:面向未来高速通信的快速、准确的大孔径表面计量
- 批准号:
2335106 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Directed evolution of site-specific bacterial transposase genes to alter specificity and efficiency of insertion of large DNA segments into restorable gene fusions
SBIR 第一阶段:位点特异性细菌转座酶基因的定向进化,以改变大 DNA 片段插入可恢复基因融合的特异性和效率
- 批准号:
2234291 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Development of a Novel, Sprayable, Large Volume Hydrogel Delivery System Platform
SBIR 第一阶段:开发新型、可喷雾、大容量水凝胶输送系统平台
- 批准号:
2304462 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Automated Perception for Robotic Chopsticks Manipulating Small and Large Objects in Constrained Spaces
SBIR 第二阶段:机器人筷子在受限空间中操纵小型和大型物体的自动感知
- 批准号:
2321919 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Operational Monitoring of Large-Area Critical Infrastructure
SBIR第一阶段:大面积关键基础设施的运行监控
- 批准号:
2112228 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Proof -Of-Concept for Large-Scale and Low-Cost Biomass Production Using an Innovative Open Aquatic Algae Cultivation System (OAACS)
SBIR 第一阶段:使用创新的开放式水藻培养系统 (OAACS) 进行大规模、低成本生物质生产的概念验证
- 批准号:
2213114 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Pre-Hospital Detection of Large Vessel Occlusion Strokes
SBIR 第一阶段:大血管闭塞中风的院前检测
- 批准号:
2213156 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Large-Scale Synthesis of Hollow Metal Nanospheres: Conversion of Batch Synthesis to Continuous Flow
SBIR第二阶段:空心金属纳米球的大规模合成:间歇合成向连续流动的转化
- 批准号:
2127133 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Viral inactivation in air and on surfaces across large areas by safe, non-thermal, non-ionizing electromagnetic radiation
SBIR 第一阶段:通过安全、非热、非电离电磁辐射灭活空气中和大面积表面上的病毒
- 批准号:
2036664 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant