CAREER: Coding Theory for Robust Large-Scale Machine Learning
职业:鲁棒大规模机器学习的编码理论
基本信息
- 批准号:1844951
- 负责人:
- 金额:$ 50.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coding theory has played a critical role in modern information technology by supporting robustness of information against a backdrop of multifaceted uncertainty. Following recent successes in machine learning, robustness has emerged as a desired principle, but now in the context of large-scale computation. Challenges related to robustness are prevalent when deploying machine learning solutions in real applications and non-curated settings, which are often non-ideal environments. This project aims to address these challenges by developing novel solutions based on coding theory for computation. These solutions offer provable robustness guarantees, can outperform more traditional solutions in practice, and extend to machine learning systems the gains that have transformed communication and storage systems. Existing and new collaborations of the investigator will facilitate industry cooperation and increase the transition to practice for the frameworks and algorithms generated from this project. The research will be strongly coupled with educational developments guided by recent advances in education science, alongside an outreach program within the Wisconsin Institute for Discovery. This project aims to develop novel coding-theoretic solutions and fundamental trade-offs for robust large-scale machine learning. The research program is centered around three thrusts. The first thrust focuses on robustness during distributed optimization in the presence of delays and straggler nodes, where the speed of convergence is affected by nodes in the system that are significantly slower than average. The second thrust focuses on robustness during distributed optimization in the presence of Byzantine nodes and worst-case failures. Recent studies proposed robust aggregation rules to filter out the effect of worst-case or adversarial failures. This project develops coding-theoretic solutions that can be orders of magnitude faster, and give rise to unexplored trade-offs between computation and Byzantine tolerance. The third thrust focuses on adversarial perturbations during prediction that can force state-of-the-art models to consistently mis-classify events/data. The coding-theoretic approach of this project pursues provable defense mechanisms against adversarial attacks through ensembles of models with inherent redundancy and through data augmentation. The proposed theoretical and algorithmic solutions are afforded by an interdisciplinary mix of tools from information and coding theory, distributed optimization, and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
编码理论在现代信息技术中发挥了关键作用,它支持了信息在多方面不确定性背景下的稳健性。随着机器学习最近的成功,稳健性已经成为一种理想的原则,但现在是在大规模计算的背景下。在实际应用程序和非管理环境中部署机器学习解决方案时,与健壮性相关的挑战普遍存在,这些环境通常不是理想的环境。该项目旨在通过开发基于计算编码理论的新解决方案来应对这些挑战。这些解决方案提供了可证明的健壮性保证,在实践中可以超越更传统的解决方案,并将改变了通信和存储系统的收益扩展到机器学习系统。调查员现有的和新的合作将促进行业合作,并促进该项目产生的框架和算法向实践的过渡。这项研究将与教育科学最新进展指导下的教育发展紧密结合,同时还将与威斯康星州探索研究所内的一项外联计划相结合。该项目旨在为稳健的大规模机器学习开发新的编码理论解决方案和基本权衡。研究计划围绕三个方面展开。第一个重点是在存在延迟和掉队节点的情况下,分布式优化过程中的稳健性,其中收敛速度受到系统中显著低于平均速度的节点的影响。第二个重点是在存在拜占庭节点和最坏故障的情况下,分布式优化过程中的健壮性。最近的研究提出了稳健的聚集规则来过滤最坏情况或对抗性失败的影响。这个项目开发了编码理论解决方案,其速度可以快几个数量级,并在计算和拜占庭容忍度之间产生了尚未探索的权衡。第三个重点是预测过程中的对抗性扰动,这些扰动可能会迫使最先进的模型一致地错误分类事件/数据。该项目的编码理论方法通过具有固有冗余性的模型集成和数据增强来寻求针对对手攻击的可证明的防御机制。建议的理论和算法解决方案由来自信息和编码理论、分布式优化和机器学习的跨学科工具组合提供。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization is Sufficient
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Ankit Pensia;Shashank Rajput;Alliot Nagle;Harit Vishwakarma;Dimitris Papailiopoulos
- 通讯作者:Ankit Pensia;Shashank Rajput;Alliot Nagle;Harit Vishwakarma;Dimitris Papailiopoulos
Bad Global Minima Exist and SGD Can Reach Them
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Shengchao Liu;Dimitris Papailiopoulos;D. Achlioptas
- 通讯作者:Shengchao Liu;Dimitris Papailiopoulos;D. Achlioptas
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Hongyi Wang;Kartik K. Sreenivasan;Shashank Rajput;Harit Vishwakarma;Saurabh Agarwal;Jy-yong Sohn;
- 通讯作者:Hongyi Wang;Kartik K. Sreenivasan;Shashank Rajput;Harit Vishwakarma;Saurabh Agarwal;Jy-yong Sohn;
An Exponential Improvement on the Memorization Capacity of Deep Threshold Networks
深度阈值网络记忆能力的指数级提升
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rajput, S.;Sreenivasan, K.;Papailiopoulos, D;Karbasi, A.
- 通讯作者:Karbasi, A.
DETOX: A Redundancy-based Framework for Faster and More Robust Gradient Aggregation
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Shashank Rajput;Hongyi Wang;Zachary B. Charles;Dimitris Papailiopoulos
- 通讯作者:Shashank Rajput;Hongyi Wang;Zachary B. Charles;Dimitris Papailiopoulos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitrios Papailiopoulos其他文献
Dimitrios Papailiopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitrios Papailiopoulos', 18)}}的其他基金
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
相似国自然基金
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Non-coding RNA在RAS抑制剂治疗IgA肾病疗效差异中的作用及机制研究
- 批准号:81770709
- 批准年份:2017
- 资助金额:52.0 万元
- 项目类别:面上项目
水稻细菌性褐条病菌致病相关non-coding RNAs的鉴定、功能及调控机制研究
- 批准号:31571971
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
Long non-coding RNA MEG3分子对胶质瘤干细胞调控作用的研究
- 批准号:81402438
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
调控家蚕发育非编码RNA(non-coding RNA, ncRNA)的功能解析
- 批准号:31172158
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
保守非基因序列(CNGs),非编码RNA序列(Non-coding RNAs)和内含子(Introns)的信息论研究和功能预测
- 批准号:90403010
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
Coding theory and Design theory for probability measures on symmetric spaces
对称空间概率测度的编码理论和设计理论
- 批准号:
23KJ1641 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-BSF: AF: Small: Advancing Coding Theory Through the Lens of Pseudorandomness
NSF-BSF:AF:小:通过伪随机性的视角推进编码理论
- 批准号:
2231157 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324397 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
REU Site: Combinatorics and Coding Theory in the Tropics
REU 网站:热带地区的组合学和编码理论
- 批准号:
2150434 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
REU Site: Cryptography and Coding Theory at the University of South Florida
REU 网站:南佛罗里达大学密码学和编码理论
- 批准号:
2244488 - 财政年份:2023
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
New Frontiers in Coding Theory: Reed-Muller and Polar Codes
编码理论的新前沿:Reed-Muller 和 Polar 码
- 批准号:
RGPIN-2019-05448 - 财政年份:2022
- 资助金额:
$ 50.83万 - 项目类别:
Discovery Grants Program - Individual
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2022
- 资助金额:
$ 50.83万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Information Theoretic Coding for Deep Neural Networks: Frameworks, Theory, and Algorithms
深度神经网络的信息论编码:框架、理论和算法
- 批准号:
RGPIN-2022-03526 - 财政年份:2022
- 资助金额:
$ 50.83万 - 项目类别:
Discovery Grants Program - Individual
CIF: Medium: Coding Theory for DNA Storage: Synthesis, Retention, and Reconstruction
CIF:媒介:DNA 存储编码理论:合成、保留和重建
- 批准号:
2212437 - 财政年份:2022
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant