CAREER: Stochastic capacity scheduling and control of distributed energy storage enabling stacked services
职业:分布式储能的随机容量调度和控制,支持堆叠服务
基本信息
- 批准号:1845093
- 负责人:
- 金额:$ 50.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The PI's long-term research objective is to develop approaches to ensure the reliability of electric power systems with massive amounts of fluctuating renewable energy resources by leveraging flexibility from distributed energy resources. As battery costs have decreased, more small-scale distributed batteries have been connected to the network to provide local services. These resources could be aggregated and used to provide grid services when not needed for their local service. Similarly, flexible loads can be aggregated and coordinated to behave like storage and provide multiple services simultaneously. Stacking services improves storage utilization and economics in addition to the ability of the grid to accommodate more renewables, improving its environmental and health impacts along with energy security. The research objective of this proposal is to develop a suite of computationally-tractable optimization and control algorithms that will enable aggregators to optimally coordinate thousands of highly-heterogeneous and distributed small-scale storage resources and loads to provide stacked services. The findings will impact energy policy, specifically the regulations surrounding stacked services. The PI's overall educational objectives are to inspire students to tackle the grand challenges of climate change and energy security, develop curricula that simultaneously teaches electric power systems and builds students' fundamental STEM skills, and increase public awareness and understanding of modern challenges and opportunities in power systems. To this end, the education plan includes four activities: i) international education and outreach in Liberia; ii) public education and outreach via the development of an online energy storage game highlighting the opportunities and challenges associated with distributed energy storage; iii) graduate and undergraduate education; and iv) outreach to practitioners, researchers, and policymakers via short courses, webinars, and talks. The educational activities will promote workforce development through curricular innovation at University of Michigan and the University of Liberia, and outreach to Liberian K-12 and undergraduate women. The research objective is challenging because the power system is uncertain, nonlinear, and high dimensional; sensing and communication systems required for storage coordination are imperfect; and coordination must not negatively impact the distribution network. The research will develop i) stochastic optimization approaches to schedule aggregations of distributed storage to provide stacked services, while managing storage nonconvexities; ii) robust predictive nonlinear control approaches to coordinate aggregations of distributed storage to provide stacked services, leveraging novel aggregate storage models capturing degradation dynamics; iii) aggregate load models (identified with experimental data) representing load flexibility as storage, including the efficiency and degradation associated with load coordination actions and the model error resulting from the use of approximate storage-type models; and iv) optimization/control approaches to coordinate highly-heterogeneous storage and load aggregations. The results will be validated in high-fidelity simulation environments and the most promising approaches will be implemented in a realistic physical test bed. Methodologically, the research will develop i) novel stochastic dual dynamic programming (SDDP) methods for nonconvex models, leveraging emerging extensions of SDDP to integer programming problems, and ii) novel robust predictive control methods that integrate sliding mode control and model predictive control. While past work has proposed methods of combining sliding and model predictive control, they require online optimization whereas we seek a control policy for fast online computation. In summary, the research will benefit the power systems, operations research, and control systems communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI的长期研究目标是开发方法,通过利用分布式能源的灵活性,确保具有大量波动可再生能源的电力系统的可靠性。随着电池成本的下降,更多的小规模分布式电池已连接到网络,以提供本地服务。这些资源可以被聚合起来,在本地服务不需要时用于提供网格服务。同样,灵活的负载可以聚合和协调,以像存储一样工作,并同时提供多个服务。除了电网容纳更多可再生能源的能力外,堆叠服务还提高了存储利用率和经济性,改善了其环境和健康影响,沿着能源安全。该提案的研究目标是开发一套计算上易于处理的优化和控制算法,使聚合器能够最佳地协调数千个高度异构和分布式的小规模存储资源和负载,以提供堆叠服务。调查结果将影响能源政策,特别是围绕堆叠服务的法规。 PI的总体教育目标是激励学生应对气候变化和能源安全的重大挑战,开发同时教授电力系统和培养学生基本STEM技能的课程,并提高公众对电力系统现代挑战和机遇的认识和理解。为此,该教育计划包括四项活动:i)利比里亚的国际教育和宣传; ii)通过开发在线储能游戏,突出与分布式储能相关的机遇和挑战,开展公共教育和宣传; iii)研究生和本科生教育; iv)通过短期课程,网络研讨会和会谈,与从业人员,研究人员和政策制定者进行宣传。教育活动将通过密歇根大学和利比里亚大学的课程创新以及对利比里亚K-12和本科女生的外联活动,促进劳动力发展。研究目标是具有挑战性的,因为电力系统是不确定的,非线性的,高维的;存储协调所需的传感和通信系统是不完善的;和协调不得对配电网产生负面影响。该研究将开发i)随机优化方法来调度分布式存储的聚合以提供堆叠服务,同时管理存储非凸性; ii)鲁棒的预测非线性控制方法来协调分布式存储的聚合以提供堆叠服务,利用新颖的聚合存储模型捕获降级动态; iii)总负荷模型(用实验数据确定)代表作为存储的负载灵活性,包括与负载协调动作相关联的效率和降级以及由于使用近似存储而导致的模型误差-类型模型;以及iv)协调高度异构的存储和负载聚合的优化/控制方法。结果将在高保真仿真环境中进行验证,最有前途的方法将在现实的物理试验台上实施。在方法上,研究将开发i)新的随机对偶动态规划(SDDP)方法的非凸模型,利用SDDP的整数规划问题的新兴扩展,和ii)新的鲁棒预测控制方法,集成滑模控制和模型预测控制。虽然过去的工作提出了滑动和模型预测控制相结合的方法,他们需要在线优化,而我们寻求一个快速在线计算的控制策略。总之,这项研究将有利于电力系统,运营研究和控制系统community.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using demand response to improve power system small-signal stability
利用需求响应提高电力系统小信号稳定性
- DOI:10.1016/j.segan.2023.101214
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yao, Mengqi;Roy, Sandip;Mathieu, Johanna L.
- 通讯作者:Mathieu, Johanna L.
Tractable Robust Drinking Water Pumping to Provide Power Network Voltage Support
易于处理的强大饮用水抽水系统提供电网电压支持
- DOI:10.1109/cdc45484.2021.9683419
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Stuhlmacher, Anna;Roald, Line A.;Mathieu, Johanna L.
- 通讯作者:Mathieu, Johanna L.
Flexible drinking water pumping to provide multiple grid services
灵活的饮用水抽水提供多种网格服务
- DOI:10.1016/j.epsr.2022.108491
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Stuhlmacher, Anna;Mathieu, Johanna L.
- 通讯作者:Mathieu, Johanna L.
Inexactness of Second Order Cone Relaxations for Calculating Operating Envelopes
计算工作包络线时二阶锥松弛的不精确性
- DOI:10.1109/smartgridcomm57358.2023.10333939
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Moring, Hannah;Mathieu, Johanna L.
- 通讯作者:Mathieu, Johanna L.
Stochastic Planning of a Mostly-Renewable Power Grid
以可再生能源为主的电网的随机规划
- DOI:10.1109/ccta54093.2023.10253007
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chen, Sunny;Mathieu, Johanna L.;Seiler, Peter
- 通讯作者:Seiler, Peter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johanna Mathieu其他文献
Johanna Mathieu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johanna Mathieu', 18)}}的其他基金
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2222096 - 财政年份:2023
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
I-Corps: Fast Timescale Residential Demand Response
I-Corps:快速住宅需求响应
- 批准号:
2020964 - 财政年份:2020
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
SCC-IRG Track 1: Reducing Barriers to Residential Energy Security through an Integrated Case-management, Data-driven, Community-based approach
SCC-IRG 第 1 轨道:通过综合案例管理、数据驱动、基于社区的方法减少住宅能源安全障碍
- 批准号:
1952038 - 财政年份:2020
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
Inferring the behavior of distributed energy resources from incomplete measurements
从不完整的测量推断分布式能源的行为
- 批准号:
1508943 - 财政年份:2015
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
EAGER: Renewables: Demand response algorithms to improve electric power system stability margins
EAGER:可再生能源:提高电力系统稳定性裕度的需求响应算法
- 批准号:
1549670 - 财政年份:2015
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
CyberSEES: Type 1: Data-driven approaches to managing uncertain load control in sustainable power systems
CyberSEES:类型 1:管理可持续电力系统中不确定负载控制的数据驱动方法
- 批准号:
1442495 - 财政年份:2014
- 资助金额:
$ 50.01万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2022
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2021
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Capacity Expansion with Applications in Logistics and Telecommunications Networks
随机容量扩展及其在物流和电信网络中的应用
- 批准号:
RGPIN-2015-06524 - 财政年份:2020
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2020
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Capacity Expansion with Applications in Logistics and Telecommunications Networks
随机容量扩展及其在物流和电信网络中的应用
- 批准号:
RGPIN-2015-06524 - 财政年份:2019
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2019
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Capacity Expansion with Applications in Logistics and Telecommunications Networks
随机容量扩展及其在物流和电信网络中的应用
- 批准号:
RGPIN-2015-06524 - 财政年份:2018
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2018
- 资助金额:
$ 50.01万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Optimization Models for Capacity Planning and Allocation in Freight Transportation Services
货运服务运力规划和分配的随机优化模型
- 批准号:
533221-2018 - 财政年份:2018
- 资助金额:
$ 50.01万 - 项目类别:
Engage Grants Program
Performance analysis and capacity planning for stochastic systems with cut-off service levels
具有截止服务水平的随机系统的性能分析和容量规划
- 批准号:
394845127 - 财政年份:2018
- 资助金额:
$ 50.01万 - 项目类别:
Research Grants