Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
基本信息
- 批准号:RGPIN-2019-04972
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inventory, capacity and revenue management are some of the fundamental areas of research and practice in operations management. The main research questions of interest in this field are about determining optimal inventory and capacity related decisions as well as polices to increase the revenue of a profit maximizing entity in a wide set of instances which are of great significance to the Canadian economy. Examples include Health care, manufacturing, retail and financial service organizations such as banks and other investment firms. The settings of the above problems have certain common themes. These include uncertainty of some kind , limited capacity, information evolving over time and the need for dynamic decisions made over time with the overall objective of maximizing/minimizing certain returns on investment (profits, costs, throughput for certain service classes etc.). Dealing with these problems naturally involve at least two mathematical tasks, i.e., forecasting of the uncertainty and optimizing a suitable objective. These two tasks are distinct, but are related to each other. Despite the prevalence of these problems, we find that repeatedly firms and decision makers resort to simple sub-optimal rules of thumb to perform the above two tasks which often result in mediocre outputs. This is costly to the economy and our society. That is, often there is ample room to improve the solutions used by practitioners. The reasons for this are manifold. First of all, often, these are extremely hard mathematical optimization problems for which optimal or near optimal solutions that are easy to implement in practice are not easily found. The forecasting problem (i.e., resolving the uncertainty) is often not an easy task. Despite the availability of large amounts of data, complex systems which are intrinsically highly non linear often yield forecasts with large errors. Often there is little theoretical or practical guidance on how much to forecast and what heuristics to use in the optimization. We find this as a common phenomenon with our work with several partner firms spanning industries such as various hospitals, agriculture, retail, and other services. This leads to the potential of deriving solutions and techniques that perform well in practice as well as have attractive theoretical properties. In the last several years, we have made some progress in this front. Our understanding of these problems has moved forward from a theoretical sense and has also yielded solution procedures that are somewhat easy to implement and outperform existing heuristics. There is still significant potential to combine, extend and develop new techniques and theory to combine heuristics to stochastic optimization with forecasting. Expected outcomes will be research publications in top tier research journals in my field as well as solution procedures that will be implemented in practice.
库存、能力和收入管理是业务管理研究和实践的一些基本领域。这一领域感兴趣的主要研究问题是确定与库存和产能相关的最优决策,以及在广泛的情况下增加利润最大化实体收入的政策,这对加拿大经济具有重要意义。例如,医疗保健、制造业、零售业和金融服务组织,如银行和其他投资公司。上述问题的设置都有一定的共同主题。这些因素包括某种不确定性、有限的容量、随时间演变的信息以及需要随着时间的推移做出动态决策,其总体目标是最大化/最小化某些投资回报(利润、成本、某些服务类别的吞吐量等)。处理这些问题自然涉及至少两个数学任务,即预测不确定性和优化合适的目标。这两项任务是不同的,但又相互关联。尽管这些问题普遍存在,但我们发现,公司和决策者一再求助于简单的次优经验法则来执行上述两项任务,这往往会导致平庸的产出。这对经济和我们的社会来说是代价高昂的。也就是说,通常有足够的空间来改进从业者使用的解决方案。造成这种情况的原因是多方面的。首先,这些通常是极其困难的数学优化问题,对于这些问题,很难找到在实践中容易实现的最优或接近最优的解。预测问题(即解决不确定性)往往不是一件容易的事情。尽管有大量的数据可用,但本质上高度非线性的复杂系统往往会产生大误差的预测。通常,很少有关于预测多少以及在优化中使用什么启发式方法的理论或实践指导。我们发现,这是我们与几家合作公司合作的常见现象,这些公司横跨各种行业,如医院、农业、零售和其他服务。这导致了获得在实践中表现良好并具有吸引人的理论特性的解决方案和技术的潜力。在过去的几年里,我们在这方面取得了一些进展。我们对这些问题的理解已经从理论意义上向前迈进了一步,也产生了一些易于实施并优于现有启发式算法的解决程序。仍然有很大的潜力来结合、扩展和开发新的技术和理论,将启发式方法与随机优化和预测相结合。预期的结果将是在我所在领域的顶级研究期刊上发表的研究论文,以及将在实践中实施的解决方案程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagarajan, Mahesh其他文献
Lipid distributions in the Global Diagnostics Network across five continents.
- DOI:
10.1093/eurheartj/ehad371 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:39.3
- 作者:
Martin, Seth S.;Niles, Justin K.;Kaufman, Harvey W.;Awan, Zuhier;Elgaddar, Ola;Choi, Rihwa;Ahn, Sunhyun;Verma, Rajan;Nagarajan, Mahesh;Don-Wauchope, Andrew;Castelo, Maria Helane Costa Gurgel;Hirose, Caio Kenji;James, David;Truman, Derek;Todorovska, Maja;Momirovska, Ana;Pivovarnikova, Hedviga;Rakociova, Monika;Louzao-Gudin, Pedro;Batu, Janserey;El Banna, Nehmat;Kapoor, Hema - 通讯作者:
Kapoor, Hema
Prospect Theory and the Newsvendor Problem
- DOI:
10.1287/mnsc.2013.1804 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:5.4
- 作者:
Nagarajan, Mahesh;Shechter, Steven - 通讯作者:
Shechter, Steven
Coalition Stability in Assembly Models
- DOI:
10.1287/opre.1080.0536 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:2.7
- 作者:
Nagarajan, Mahesh;Sosic, Greys - 通讯作者:
Sosic, Greys
Dynamic Capacity Allocation for Elective Surgeries: Reducing Urgency-Weighted Wait Times
- DOI:
10.1287/msom.2019.0846 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:6.3
- 作者:
Carew, Stephanie;Nagarajan, Mahesh;Skarsgard, Erik - 通讯作者:
Skarsgard, Erik
Game-theoretic analysis of cooperation among supply chain agents: Review and extensions
- DOI:
10.1016/j.ejor.2006.05.045 - 发表时间:
2008-06-16 - 期刊:
- 影响因子:6.4
- 作者:
Nagarajan, Mahesh;Sosic, Greys - 通讯作者:
Sosic, Greys
Nagarajan, Mahesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nagarajan, Mahesh', 18)}}的其他基金
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2017
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2016
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2015
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Multiproduct Capacity and Inventory Problems: Exact Algorithms and Heuristics
随机多产品产能和库存问题:精确算法和启发式
- 批准号:
RGPIN-2014-03901 - 财政年份:2014
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Approximation algortihms for stochastic inventory models
随机库存模型的近似算法
- 批准号:
299193-2009 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Approximation algortihms for stochastic inventory models
随机库存模型的近似算法
- 批准号:
299193-2009 - 财政年份:2012
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Continuing Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226347 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Exploiting Smooth Substructure in Non-Smooth Stochastic Optimization
在非光滑随机优化中利用光滑子结构
- 批准号:
2306322 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Continuing Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226348 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
- 批准号:
2324643 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Continuing Grant
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
- 批准号:
2306023 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
- 批准号:
2239527 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant