CAREER: Discovering Structure in Uncertainty: Using Topology for Interactive Visualization of Uncertainty

职业:发现不确定性中的结构:使用拓扑进行不确定性的交互式可视化

基本信息

  • 批准号:
    1845204
  • 负责人:
  • 金额:
    $ 52.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

In science, ensembles are used to model uncertainties that occur in data from a variety of sources, including errors in measurements, inaccuracies in modeling, and a lack of adequate sampling. Understanding these errors is critical to improving human understanding of phenomena in many areas of science, from urban planning to astrophysics to medicine to weather forecasting, etc. This project investigates new Topological Data Analysis and visualization methods to analyze uncertain data. This will enable scientists to better understand phenomena within their domain by developing new insights and making discoveries more quickly. The techniques will be tested in collaboration with a biomedical engineering research team helping to develop new life-saving treatments for heart attacks and a research team helping to develop technologies that support a safe, clean, and reliable national energy grid. Furthermore, this project will study and advocate for integrating better teaching methodologies, such as peer review, into computer science curricula. The results will be integrated into visualization and computational geometry courses through course materials, such as design mini-challenges, and shared with the educational community through outreach activities, such as pedagogy-themed panels and workshops.To accomplish the goals of the project, the tools of Topological Data Analysis provide a strong theoretical basis for robustly extracting features from ensembles and designing visualizations for performing important uncertainty analysis tasks, including identifying and ranking similarities, identifying and ranking variations, and correlating topological features. This project addresses two important scientific questions: how to effectively use topology to extract features from ensembles; and how to design visualizations for domain experts that efficiently communicate the features. To extract features from an ensemble, the project will investigate new methods of robustly comparing and contrasting the topology of multiple ensemble realizations. Then, in collaboration with domain scientists, it will design new visualization methods for efficiently and effectively comparing and exploring the features and variations within ensembles. The project web site provides additional information and will include access to developed tools, data sets, and educational content.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在科学中,集合用于对来自各种来源的数据中出现的不确定性进行建模,包括测量误差,建模不准确以及缺乏足够的采样。了解这些错误对于提高人类对许多科学领域现象的理解至关重要,从城市规划到天体物理学到医学到天气预报等,该项目研究新的拓扑数据分析和可视化方法来分析不确定数据。这将使科学家能够通过开发新的见解和更快地发现来更好地了解其领域内的现象。这些技术将与一个生物医学工程研究团队合作进行测试,该团队帮助开发新的心脏病挽救生命的治疗方法,并帮助开发支持安全,清洁和可靠的国家能源网的技术。此外,该项目将研究和倡导将同行评议等更好的教学方法纳入计算机科学课程。研究结果将通过课程材料(如设计小挑战)纳入可视化和计算几何课程,并通过以教学为主题的小组讨论和讲习班等外联活动与教育界分享。拓扑数据分析工具为从集合中稳健地提取特征和设计可视化以执行重要任务提供了强有力的理论基础不确定性分析任务,包括识别和排序相似性,识别和排序变化,以及关联拓扑特征。该项目解决了两个重要的科学问题:如何有效地使用拓扑从集合中提取特征;以及如何为领域专家设计可视化,以有效地传达特征。为了从集成中提取特征,该项目将研究鲁棒地比较和对比多个集成实现的拓扑结构的新方法。然后,与领域科学家合作,它将设计新的可视化方法,以有效地比较和探索集成中的特征和变化。该项目的网站提供了更多的信息,并将包括访问开发的工具,数据集和教育内容。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TopoLines: Topological Smoothing for Line Charts
  • DOI:
    10.2312/evs.20201053
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashley Suh;Christopher Salgado;Mustafa Hajij;P. Rosen
  • 通讯作者:
    Ashley Suh;Christopher Salgado;Mustafa Hajij;P. Rosen
Leveraging Peer Feedback to Improve Visualization Education
利用同行反馈来改进可视化教育
Visual Inspection of DBS Efficacy
DBS 功效的目视检查
  • DOI:
    10.1109/visual.2019.8933720
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hollister, Brad E.;Duffley, Gordon;Butson, Chris;Johnson, Chris;Rosen, Paul
  • 通讯作者:
    Rosen, Paul
AffectiveTDA: Using Topological Data Analysis to Improve Analysis and Explainability in Affective Computing
LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Rosen其他文献

Transformation of the peripheral intravenous catheter placement experience in pediatrics
儿科外周静脉置管体验的转变
  • DOI:
    10.5301/jva.5000652
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven R Kelly;Jean Russell;Pitamber Devgon;Paul Rosen
  • 通讯作者:
    Paul Rosen
Astigmatic change 1 year after excimer laser treatment of myopia and myopic astigmatism
  • DOI:
    10.1016/s0886-3350(96)80193-3
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geoffrey C. Tabin;Noel Alpins;Geoffrey F. Aldred;Catherine A. McCarty;Hugh R. Taylor;Noel Alpins;Stephen Bambery;Saf Bassili;Anne Brooks;Stuart Brumley;Nick Downie;Ernest Finkelstein;Lionel Kowal;Pradeep Madhok;Bob McDonald;Robert Nave;Justin O'Day;Doug Reinehr;Joe Reich;Paul Rosen
  • 通讯作者:
    Paul Rosen
on National Conference on Recent Trends in Computing
全国计算最新趋势会议
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. S. Junghare;V. M. Thakare;S. S. Sherekar;R. Dharaskar;Jingshu Huang;Brian Bue;A. Pattath;David S. Ebert;Krystal M. Thomas;Anja B. Naumann;Ina Wechsung;J. Hurtienne;P. Schaik;Jerry Chen;Limi Yoon;E. .. Bethel;Maria Andréia F. Rodrigues;Rafael G. Barbosa;Nabor C. Mendonça;Mike Eissele;D. Weiskopf;Niklas Elmqvist;Yann Riche;Nathalie Henry;Jean;Emmanuel Pietriga;Olivier Bau;V. Popescu;Paul Rosen;Laura L. Arns;X. Tricoche;Chris Wyman;Christoph M. Hoffmann
  • 通讯作者:
    Christoph M. Hoffmann
"Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations": Correction to Epstein et al. (2011).
“多动症儿童在一系列认知任务(包括奖励和事件率操作)上反应时间变异性较高的证据”:对 Epstein 等人的更正。
  • DOI:
    10.1037/a0031292
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Epstein;Joshua M. Langberg;Paul Rosen;Amanda Graham;Megan E. Narad;Tanya N. Antonini;William B. Brinkman;T. Froehlich;J. Simon;M. Altaye
  • 通讯作者:
    M. Altaye
Scintigraphic evaluation of cerebrospinal fluid diversionary shunt: Complications of the atrial limb
  • DOI:
    10.1016/s0001-2998(85)80017-9
  • 发表时间:
    1985-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Myron L. Lecklitner;Paul Rosen;Michael B. Brady
  • 通讯作者:
    Michael B. Brady

Paul Rosen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Rosen', 18)}}的其他基金

CAREER: Discovering Structure in Uncertainty: Using Topology for Interactive Visualization of Uncertainty
职业:发现不确定性中的结构:使用拓扑进行不确定性的交互式可视化
  • 批准号:
    2316496
  • 财政年份:
    2022
  • 资助金额:
    $ 52.68万
  • 项目类别:
    Continuing Grant

相似海外基金

Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
  • 批准号:
    2245492
  • 财政年份:
    2023
  • 资助金额:
    $ 52.68万
  • 项目类别:
    Continuing Grant
CAREER: Discovering Structure in Uncertainty: Using Topology for Interactive Visualization of Uncertainty
职业:发现不确定性中的结构:使用拓扑进行不确定性的交互式可视化
  • 批准号:
    2316496
  • 财政年份:
    2022
  • 资助金额:
    $ 52.68万
  • 项目类别:
    Continuing Grant
Discovering Chemical Activity Networks-Predicting Bioactivity Based on Structure
发现化学活性网络——根据结构预测生物活性
  • 批准号:
    10450792
  • 财政年份:
    2021
  • 资助金额:
    $ 52.68万
  • 项目类别:
Discovering Chemical Activity Networks-Predicting Bioactivity Based on Structure
发现化学活性网络——根据结构预测生物活性
  • 批准号:
    10646393
  • 财政年份:
    2021
  • 资助金额:
    $ 52.68万
  • 项目类别:
Discovering Chemical Activity Networks-Predicting Bioactivity Based on Structure
发现化学活性网络——根据结构预测生物活性
  • 批准号:
    10198318
  • 财政年份:
    2021
  • 资助金额:
    $ 52.68万
  • 项目类别:
Discovering the Building Blocks and Structure Property Relationships of Grain Boundaries Using Machine Learning
使用机器学习发现晶界的构建块和结构属性关系
  • 批准号:
    1817321
  • 财政年份:
    2019
  • 资助金额:
    $ 52.68万
  • 项目类别:
    Continuing Grant
Discovering How Cu(II)/Zn(II) Uptake by the Prion Protein Controls Structure, Function and Neurotoxicity
发现朊病毒蛋白摄取 Cu(II)/Zn(II) 如何控制结构、功能和神经毒性
  • 批准号:
    9914103
  • 财政年份:
    2019
  • 资助金额:
    $ 52.68万
  • 项目类别:
Discovering How Cu(II)/Zn(II) Uptake by the Prion Protein Controls Structure, Function and Neurotoxicity
发现朊病毒蛋白摄取 Cu(II)/Zn(II) 如何控制结构、功能和神经毒性
  • 批准号:
    10396527
  • 财政年份:
    2019
  • 资助金额:
    $ 52.68万
  • 项目类别:
Discovering How Cu(II)/Zn(II) Uptake by the Prion Protein Controls Structure, Function and Neurotoxicity
发现朊病毒蛋白摄取 Cu(II)/Zn(II) 如何控制结构、功能和神经毒性
  • 批准号:
    10612778
  • 财政年份:
    2019
  • 资助金额:
    $ 52.68万
  • 项目类别:
CRCNS Research Proposal: Collaborative Research: Discovering Network Structure in the Space of Group-Level Functional Differences
CRCNS 研究提案:协作研究:发现群体级功能差异空间中的网络结构
  • 批准号:
    1822575
  • 财政年份:
    2018
  • 资助金额:
    $ 52.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了