CAREER: Optimization Landscape for Non-convex Functions - Towards Provable Algorithms for Neural Networks
职业:非凸函数的优化景观 - 走向可证明的神经网络算法
基本信息
- 批准号:1845171
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning, a machine learning method that is based on artificial neural networks, has greatly improved the performance of learning algorithms for many tasks that are related to understanding complicated data such as natural images, videos and language. Products based on deep learning have already made real-life impact in face recognition, machine translation, and shown promise for more applications such as self-driving cars. However, despite the practical success of deep learning, theoretical understanding for why these algorithms work has been scarce. One of the main difficulties in understanding deep learning algorithms is that these algorithms need to solve very complicated optimization problems that try to find out what are the best ways for the neurons to be connected. In the most general form, these optimization problems are known to be intractable. This research project will identify properties of the real-world problems that make these problems special and tractable, and provide new optimization algorithms with theoretical guarantees that are applicable to deep learning. The materials developed in the project will be disseminated through conferences and workshops that try to connect different research communities, and used to create new machine learning courses. The algorithms designed in the project will also be implemented in standard deep learning frameworks and made publicly available.The specific approach of this project revolves around the new concept of optimization landscape. For an optimization problem, its optimization landscape includes clear understanding of the location and values of its local and global optimal solutions. The research goals are divided into three categories. First, the research project will focus on a class of locally optimizable functions for which local minima are all globally optimal. The research project will develop simple and efficient algorithms for optimizing such functions, as well as a new framework to prove several problems of practical interest are locally optimizable. Second, the project will develop stronger optimization algorithms that can work even when the optimization landscape is not as ideal. Finally, the research will focus on optimization problems that arise in deep learning and show how the techniques developed in the previous two parts can be applied. These projects will bring more theoretical insights into the heuristics for training neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习是一种基于人工神经网络的机器学习方法,它极大地提高了与理解自然图像、视频和语言等复杂数据相关的许多任务的学习算法的性能。基于深度学习的产品已经在人脸识别、机器翻译等领域产生了现实影响,并有望在自动驾驶汽车等更多应用中发挥作用。然而,尽管深度学习在实践中取得了成功,但对这些算法为什么有效的理论理解却很少。理解深度学习算法的主要困难之一是,这些算法需要解决非常复杂的优化问题,试图找出神经元连接的最佳方式。在最一般的形式,这些优化问题是已知的是棘手的。该研究项目将确定现实世界问题的属性,使这些问题变得特殊和易于处理,并提供新的优化算法,并提供适用于深度学习的理论保证。该项目开发的材料将通过会议和研讨会传播,这些会议和研讨会试图连接不同的研究社区,并用于创建新的机器学习课程。该项目中设计的算法也将在标准深度学习框架中实现并公开提供。该项目的具体方法围绕优化景观的新概念。对于优化问题,其优化景观包括对其局部和全局最优解的位置和值的清晰理解。研究目标分为三类。首先,本研究计画将集中于一类局部最佳化函数,其局部最小值皆为全局最佳。该研究项目将开发简单有效的算法来优化这些函数,以及一个新的框架来证明几个实际问题是局部优化的。其次,该项目将开发更强大的优化算法,即使在优化环境不理想的情况下也可以工作。最后,本研究将重点关注深度学习中出现的优化问题,并展示如何应用前两部分中开发的技术。这些项目将为训练神经网络的算法带来更多的理论见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiding Data Helps: On the Benefits of Masking for Sparse Coding
- DOI:10.48550/arxiv.2302.12715
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Muthuraman Chidambaram;Chenwei Wu;Yu Cheng;Rong Ge
- 通讯作者:Muthuraman Chidambaram;Chenwei Wu;Yu Cheng;Rong Ge
Understanding Deflation Process in Over-parametrized Tensor Decomposition
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Rong Ge;Y. Ren;Xiang Wang;Mo Zhou
- 通讯作者:Rong Ge;Y. Ren;Xiang Wang;Mo Zhou
4.Online Algorithms with Multiple Predictions
4.多重预测的在线算法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anand, K.;Ge, R.;Kumar, A.;Panigrahi, D.
- 通讯作者:Panigrahi, D.
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Mo Zhou;Rong Ge;Chi Jin
- 通讯作者:Mo Zhou;Rong Ge;Chi Jin
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
估计对数凹分布的归一化常数:算法和下界
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ge, Rong;Lee, Holden;Lu, Jianfeng
- 通讯作者:Lu, Jianfeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Ge其他文献
Provable Algorithms for Inference in Topic Models
主题模型中的可证明推理算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora;Rong Ge;Frederic Koehler;Tengyu Ma;Ankur Moitra - 通讯作者:
Ankur Moitra
A Review of Research on the Effects of Residential Environment on the Health of Older Adults from a Neuroscience Perspective
神经科学视角下居住环境对老年人健康影响的研究综述
- DOI:
10.25236/ajee.2024.060101 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rong Ge - 通讯作者:
Rong Ge
Minimizing Nonconvex Population Risk from Rough Empirical Risk
最小化粗略经验风险中的非凸总体风险
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chi Jin;Lydia T. Liu;Rong Ge;Michael I. Jordan - 通讯作者:
Michael I. Jordan
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
平滑景观增强了 SGD 的信号:学习单索引模型的最佳样本复杂性
- DOI:
10.48550/arxiv.2305.10633 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexandru Damian;Eshaan Nichani;Rong Ge;Jason D. Lee - 通讯作者:
Jason D. Lee
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure
步长衰减计划:近乎最优的几何衰减学习率过程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rong Ge;S. Kakade;Rahul Kidambi;Praneeth Netrapalli - 通讯作者:
Praneeth Netrapalli
Rong Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Ge', 18)}}的其他基金
CCF: EAGER: DeepGreen: Modeling and Boosting Accelerated Computing on Liquid Immersion Cooled HPC Systems
CCF:EAGER:DeepGreen:液浸冷却 HPC 系统的建模和加速加速计算
- 批准号:
1942182 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Towards Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:走向具有可证明和可解释保证的算法
- 批准号:
1704656 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1453775 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1551262 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1551511 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1305382 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: EEDAG: Exploring Energy-Efficient Parallel Tasks Generation and Scheduling for Heterogeneous Multicore Systems
CSR:小型:协作研究:EEDAG:探索异构多核系统的节能并行任务生成和调度
- 批准号:
1116691 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant