AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Towards Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:走向具有可证明和可解释保证的算法
基本信息
- 批准号:1704656
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence along with Machine Learning are perhaps the most dominant research themes of our times - with far reaching implications for society and our current life style. While the possibilities are many, there are also doubts about how far these methods will go - and what new theoretical foundations may be required to take them to the next level overcoming possible hurdles. Recently, machine learning has undergone a paradigm shift with increasing reliance on stochastic optimization to train highly non-convex models -- including but not limited to deep nets. Theoretical understanding has lagged behind, primarily because most problems in question are provably intractable on worst-case instances. Furthermore, traditional machine learning theory is mostly concerned with classification, whereas much practical success is driven by unsupervised learning and representation learning. Most past theory of representation learning was focused on simple models such as k-means clustering and PCA, whereas practical work uses vastly more complicated models like autoencoders, restricted Boltzmann machines and deep generative models. The proposal presents an ambitious agenda for extending theory to embrace and support these practical trends, with hope of influencing practice. Theoretical foundations will be provided for the next generation of machine learning methods and optimization algorithms. The project may end up having significant impact on practical machine learning, and even cause a cultural change in the field -- theory as well as practice -- with long-term ramifications. Given the ubiquity as well as economic and scientific implications of machine learning today, such impact will extend into other disciplines, especially in (ongoing) collaborations with researchers in neuroscience. The project will train a new generation of machine learning researchers, through an active teaching and mentoring plan at all levels, from undergrad to postdoc. This new generation will be at ease combining cutting edge theory and applications. There is a pressing need for such people today, and the senior PIs played a role in training/mentoring several existing ones. Technical contributions will include new theoretical models of knowledge representation and semantics, and also frameworks for proving convergence of nonconvex optimization routines. Theory will be developed to explain and exploit the interplay between representation learning and supervised learning that has proved so empirically successful in deep learning, and seems to underlie new learning paradigms such as domain adaptation, transfer learning, and interactive learning. Attempts will be made to replace neural models with models with more "interpretable" attributes and performance curves. All PIs have a track record of combining theory with practice. They are also devoted to a heterodox research approach, borrowing from all the past phases of machine learning: interpretable representations from the earlier phases (which relied on logical representations, or probabilistic models), provable guarantees from the middle phase (convex optimization, kernels etc.), and an embrace of nonconvex methods from the latest deep net phase. Such eclecticism is uncommon in machine learning, and may give rise to new paradigms and new kinds of science.
人工智能沿着机器学习也许是我们这个时代最主要的研究主题-对社会和我们当前的生活方式具有深远的影响。虽然可能性有很多,但人们也怀疑这些方法能走多远,以及可能需要哪些新的理论基础才能将它们提升到一个新的水平,克服可能的障碍。最近,机器学习经历了范式转变,越来越依赖随机优化来训练高度非凸模型,包括但不限于深度网络。理论上的理解已经落后了,主要是因为大多数问题在最坏的情况下都是难以解决的。此外,传统的机器学习理论主要关注分类,而许多实际成功是由无监督学习和表示学习驱动的。大多数过去的表示学习理论都集中在简单的模型上,如k均值聚类和PCA,而实际工作使用更复杂的模型,如自动编码器,受限玻尔兹曼机和深度生成模型。该提案提出了一个雄心勃勃的议程,旨在扩展理论,以拥抱和支持这些实践趋势,并希望影响实践。为下一代机器学习方法和优化算法提供理论基础。该项目最终可能会对实际的机器学习产生重大影响,甚至会引起该领域的文化变革-理论和实践-并产生长期影响。鉴于机器学习的普遍性以及经济和科学影响,这种影响将扩展到其他学科,特别是与神经科学研究人员的(持续)合作。该项目将通过积极的教学和指导计划,培养新一代的机器学习研究人员,从本科到博士后。这新一代将轻松结合尖端理论和应用。今天迫切需要这样的人,高级PI在培训/指导几个现有的PI方面发挥了作用。技术贡献将包括知识表示和语义的新理论模型,以及证明非凸优化例程收敛的框架。理论将被开发来解释和利用表征学习和监督学习之间的相互作用,这种相互作用在深度学习中已被证明是如此成功,并且似乎是领域适应,迁移学习和交互式学习等新学习范式的基础。将尝试用具有更多“可解释”属性和性能曲线的模型来取代神经模型。 所有的PI都有将理论与实践相结合的记录。他们还致力于一种非正统的研究方法,借鉴了机器学习的所有过去阶段:早期阶段的可解释表示(依赖于逻辑表示或概率模型),中间阶段的可证明保证(凸优化,内核等),以及对最新深度网络阶段的非凸方法的拥抱。这种折衷主义在机器学习中并不常见,可能会产生新的范式和新的科学类型。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Composition of Word Embeddings via Tensor Decomposition
- DOI:
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Abraham Frandsen;Rong Ge
- 通讯作者:Abraham Frandsen;Rong Ge
Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets
解释多层网络低成本解决方案的景观连接
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kuditipudi, Rohith;Wang, Xiang;Lee, Holden;Zhang, Yi;Li, Zhiyuan;Hu, Wei;Arora, Sanjeev;Ge, Rong
- 通讯作者:Ge, Rong
Customizing ML Predictions for Online Algorithms
- DOI:10.48550/arxiv.2205.08715
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Keerti Anand;Rong Ge;Debmalya Panigrahi
- 通讯作者:Keerti Anand;Rong Ge;Debmalya Panigrahi
High-Dimensional Robust Mean Estimation in Nearly-Linear Time
- DOI:10.1137/1.9781611975482.171
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Yu Cheng;Ilias Diakonikolas;Rong Ge
- 通讯作者:Yu Cheng;Ilias Diakonikolas;Rong Ge
Understanding Deflation Process in Over-parametrized Tensor Decomposition
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Rong Ge;Y. Ren;Xiang Wang;Mo Zhou
- 通讯作者:Rong Ge;Y. Ren;Xiang Wang;Mo Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Ge其他文献
Minimizing Nonconvex Population Risk from Rough Empirical Risk
最小化粗略经验风险中的非凸总体风险
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chi Jin;Lydia T. Liu;Rong Ge;Michael I. Jordan - 通讯作者:
Michael I. Jordan
A Review of Research on the Effects of Residential Environment on the Health of Older Adults from a Neuroscience Perspective
神经科学视角下居住环境对老年人健康影响的研究综述
- DOI:
10.25236/ajee.2024.060101 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rong Ge - 通讯作者:
Rong Ge
Provable Algorithms for Inference in Topic Models
主题模型中的可证明推理算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Arora;Rong Ge;Frederic Koehler;Tengyu Ma;Ankur Moitra - 通讯作者:
Ankur Moitra
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
平滑景观增强了 SGD 的信号:学习单索引模型的最佳样本复杂性
- DOI:
10.48550/arxiv.2305.10633 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexandru Damian;Eshaan Nichani;Rong Ge;Jason D. Lee - 通讯作者:
Jason D. Lee
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure
步长衰减计划:近乎最优的几何衰减学习率过程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rong Ge;S. Kakade;Rahul Kidambi;Praneeth Netrapalli - 通讯作者:
Praneeth Netrapalli
Rong Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Ge', 18)}}的其他基金
CAREER: Optimization Landscape for Non-convex Functions - Towards Provable Algorithms for Neural Networks
职业:非凸函数的优化景观 - 走向可证明的神经网络算法
- 批准号:
1845171 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CCF: EAGER: DeepGreen: Modeling and Boosting Accelerated Computing on Liquid Immersion Cooled HPC Systems
CCF:EAGER:DeepGreen:液浸冷却 HPC 系统的建模和加速加速计算
- 批准号:
1942182 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1453775 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1551262 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Cross-Layer Power-Bounded High Performance Computing on Emerging and Future Heterogeneous Computer Clusters
职业:新兴和未来异构计算机集群上的跨层功率受限高性能计算
- 批准号:
1551511 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: II-NEW: Marcher - A Heterogeneous High Performance Computing Infrastructure for Research and Education in Green Computing
协作研究:II-新:Marcher - 用于绿色计算研究和教育的异构高性能计算基础设施
- 批准号:
1305382 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: EEDAG: Exploring Energy-Efficient Parallel Tasks Generation and Scheduling for Heterogeneous Multicore Systems
CSR:小型:协作研究:EEDAG:探索异构多核系统的节能并行任务生成和调度
- 批准号:
1116691 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312241 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312242 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312243 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Nonconvex Methods and Models for Learning: Toward Algorithms with Provable and Interpretable Guarantees
AF:大型:协作研究:非凸学习方法和模型:具有可证明和可解释保证的算法
- 批准号:
1704860 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
- 批准号:
1565235 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
- 批准号:
1565264 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
- 批准号:
1505970 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Reliable Quantum Communication and Computation in the Presence of Noise
AF:大型:协作研究:噪声存在下的可靠量子通信和计算
- 批准号:
1629809 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
- 批准号:
1510010 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: AF: Large: Collaborative Research: Parallelism without Concurrency
SHF:AF:大型:协作研究:无并发的并行性
- 批准号:
1314590 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant