CAREER: Timely Insights: Interpretable, Multi-scale Summarization of Networks over Time

职业:及时的见解:随时间推移对网络进行可解释、多尺度的总结

基本信息

项目摘要

Evolving network data occur in almost all disciplines. For example, knowledge or facts are often structured into knowledge graphs, brain activity is represented via functional networks, and neural networks can be seen as evolving graph structures. This project aims to develop computational methods and models to summarize, explain, and provide insights into massive data (and their underlying dynamic processes) at multiple scales in a broad range of domains. Focusing on knowledge graphs makes it possible to achieve on-device and privacy-preserving analytics (e.g., on intelligent assistants). Modeling neural networks is expected to give insights into their interpretability and reduce their massive training computational cost. Through collaborations with experts in neuroscience, this research will contribute to decoding the brain, with a potential impact on mental development and disease detection. A significant part of this project is a plan for integrating research with education. Its overarching theme is to increase diversity in computer and data science, and engage students in graph mining research and its real-life applications via: introducing undergraduate and graduate data mining classes; mentoring students on data science projects for social good; organizing a workshop to attract undergraduates from diverse backgrounds to graduate school; and organizing a high-school data science summer camp centered around social media and networks, a theme that is a successful introduction to network science.Network summarization, which identifies structure and meaning in large-scale data, so far has mostly focused on non-complex, static data. This project aims to bridge the gap between network summarization research and real-world problems by introducing novel problem formulations in summarization (including for tasks that have not been previously viewed as graph problems) as well as theoretical analyses, unifying theories, and a suite of new, interpretable methods and scalable algorithms. It pursues three research tasks related to network evolution at different scales. At the network scale, the first task focuses on efficient, supervised or semi-supervised summarization of evolving and semantically-rich graph data (e.g., heterogeneous). At the multi-network scale, the second task introduces interpretable methods for modeling and understanding collections of evolving networks and their joint underlying physical processes, which is an under-studied problem in data mining. Via academic and industrial collaborations, the third task explores new applications in knowledge graphs, neuroscience, deep neural networks, and social sciences. The project is expected to advance the foundations of exploratory analysis of evolving data. Its outcomes will be disseminated through publications, tutorials, workshops, as well as open-source tools, code and datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不断发展的网络数据几乎出现在所有学科中。例如,知识或事实通常被构造成知识图,大脑活动通过功能网络表示,神经网络可以被视为不断发展的图结构。该项目旨在开发计算方法和模型,以在广泛的领域中以多个尺度总结,解释和提供对海量数据(及其潜在动态过程)的见解。专注于知识图可以实现设备上和隐私保护分析(例如,智能助手)。对神经网络进行建模有望深入了解其可解释性,并减少其大量的训练计算成本。通过与神经科学专家的合作,这项研究将有助于解码大脑,对智力发育和疾病检测产生潜在影响。该项目的一个重要部分是将研究与教育相结合的计划。它的首要主题是增加计算机和数据科学的多样性,并通过以下方式让学生参与图挖掘研究及其现实生活中的应用:引入本科生和研究生数据挖掘课程;指导学生进行数据科学项目以造福社会;组织研讨会以吸引来自不同背景的本科生进入研究生院;组织一个以社交媒体和网络为中心的高中数据科学夏令营,这个主题是对网络科学的成功介绍。网络摘要,它识别大规模数据的结构和意义,到目前为止,主要集中在非复杂的静态数据上。该项目旨在通过在摘要中引入新的问题公式(包括以前未被视为图问题的任务)以及理论分析,统一理论和一套新的,可解释的方法和可扩展的算法来弥合网络摘要研究与现实问题之间的差距。它追求三个研究任务相关的网络演化在不同的尺度。在网络规模上,第一个任务集中于对演进和语义丰富的图数据(例如,异质的)。在多网络规模下,第二个任务介绍了可解释的方法,用于建模和理解不断发展的网络及其联合底层物理过程的集合,这是数据挖掘中一个未充分研究的问题。通过学术和工业合作,第三项任务探索知识图谱、神经科学、深度神经网络和社会科学的新应用。预计该项目将推进对不断变化的数据进行探索性分析的基础。其成果将通过出版物、教程、研讨会以及开源工具、代码和数据集传播。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heterophily and Graph Neural Networks: Past, Present and Future
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiong Zhu;Yujun Yan;Mark Heimann;Lingxiao Zhao;L. Akoglu;Danai Koutra
  • 通讯作者:
    Jiong Zhu;Yujun Yan;Mark Heimann;Lingxiao Zhao;L. Akoglu;Danai Koutra
A Provable Framework of Learning Graph Embeddings via Summarization
  • DOI:
    10.1609/aaai.v37i4.25621
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Houquan Zhou;Shenghua Liu;Danai Koutra;Huawei Shen;Xueqi Cheng
  • 通讯作者:
    Houquan Zhou;Shenghua Liu;Danai Koutra;Huawei Shen;Xueqi Cheng
On Proximity and Structural Role-based Embeddings in Networks: Misconceptions, Techniques, and Applications
SpecGreedy: Unified Dense Subgraph Detection
SpecGreedy:统一密集子图检测
Toward Activity Discovery in the Personal Web
  • DOI:
    10.1145/3336191.3371828
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tara Safavi;Adam Fourney;Robert B Sim;Marcin Juraszek;Shane Williams;Ned Friend;Danai Koutra;Paul N. Bennett
  • 通讯作者:
    Tara Safavi;Adam Fourney;Robert B Sim;Marcin Juraszek;Shane Williams;Ned Friend;Danai Koutra;Paul N. Bennett
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danai Koutra其他文献

Patterns amongst Competing Task Frequencies: Super-Linearities, and the Almond-DG Model
竞争任务频率之间的模式:超线性和 Almond-DG 模型
One Size Does Not Fit All: Profiling Personalized Time-Evolving User Behaviors
一种方法并不适用于所有情况:分析个性化的随时间变化的用户行为
Summarizing Graphs at Multiple Scales: New Trends
总结多个尺度的图表:新趋势
Are all brains wired equally
所有的大脑都是平等的吗
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danai Koutra;Y. Gong;S. Ryman;R. Jung;J. Vogelstein;C. Faloutsos
  • 通讯作者:
    C. Faloutsos
RECS: Robust Graph Embedding Using Connection Subgraphs
RECS:使用连接子图的鲁棒图嵌入
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saba A. Al;Danai Koutra;E. Papalexakis;Sarah S. Lam
  • 通讯作者:
    Sarah S. Lam

Danai Koutra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danai Koutra', 18)}}的其他基金

Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2212143
  • 财政年份:
    2022
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Correspondence Discovery in Disparate Networks
EAGER:协作研究:不同网络中的对应发现
  • 批准号:
    1743088
  • 财政年份:
    2017
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Timely Estimation of Nitrogen Oxides Emissions for Improved Monitoring and Simulation of Atmospheric Chemical Processes
职业:及时估算氮氧化物排放,以改进大气化学过程的监测和模拟
  • 批准号:
    2338758
  • 财政年份:
    2024
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403398
  • 财政年份:
    2024
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Standard Grant
System development for early detection of infectious disease outbreaks and timely risk assessment
早期发现传染病爆发并及时评估风险的系统开发
  • 批准号:
    23K09755
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of colorimetric cellulose acetate films for timely fish freshness monitoring and their application in packaging
用于及时监测鱼类新鲜度的比色醋酸纤维素薄膜的开发及其在包装中的应用
  • 批准号:
    23KJ0275
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CIVIC - FA Track A: Pilot - Community Resilience through Engaging, Actionable, Timely, High - REsolution Air Quality Information (CREATE - AQI)
CIVIC - FA 轨道 A:试点 - 通过参与、可操作、及时、高分辨率空气质量信息(CREATE - AQI)提高社区复原力
  • 批准号:
    2322009
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Standard Grant
New Graph Mining Technologies to Enable Timely Exploration of Social Events
新的图挖掘技术能够及时探索社交事件
  • 批准号:
    DP230100899
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Discovery Projects
EMBRACE - Early detection of Brain Cancer using a novel spectroscopic liquid biopsy enabling timely detection and diagnosis for patient benefit
拥抱 - 使用新型光谱液体活检早期检测脑癌,能够及时检测和诊断,造福患者
  • 批准号:
    10066539
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    EU-Funded
Rapid point-of-care syphilis testing in an urban community-based prenatal care program for populations with barriers to healthcare access: A prospective implementation study examining acceptability, feasibility, and effectiveness for timely diagnosis and
在基于城市社区的产前护理计划中,针对难以获得医疗保健的人群进行快速现场梅毒检测:一项前瞻性实施研究,旨在检验及时诊断和治疗的可接受性、可行性和有效性。
  • 批准号:
    502562
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
    Operating Grants
Achieving Equity in Patient Outcome Reporting for Timely Assessments of Life with HIV and Substance Use (ePORTAL HIV-S)
实现患者结果报告的公平性,以便及时评估艾滋病毒感染者和药物使用的生活(ePORTAL HIV-S)
  • 批准号:
    10740440
  • 财政年份:
    2023
  • 资助金额:
    $ 55.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了