CAREER: Efficient Fuzzing with Neural Program Smoothing

职业:通过神经程序平滑进行高效模糊测试

基本信息

  • 批准号:
    1845995
  • 负责人:
  • 金额:
    $ 47.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Fuzzing is an automated software testing technique that involves feeding a stream of invalid, unexpected, or rare data as inputs to a computer program for discovering bugs leading to crashes, assertion failures, or memory corruption. Fuzzing is the de facto standard technique for finding software vulnerabilities. However, despite their tremendous promise, popular fuzzers, especially for large programs, often tend to get stuck trying redundant test inputs and struggle to find security vulnerabilities hidden deep into the program logic. To find interesting test inputs, most popular fuzzers use evolutionary algorithms, which start from a set of inputs, apply random mutations and crossovers on these inputs to generate new inputs, and apply a fitness function (e.g., achieved code coverage) to select the most promising new inputs for the next set of mutations. The key insight of this research is that an approach using continuous optimization techniques can do better, by more efficiently using the structure of the underlying functions (e.g., gradients or higher-order derivatives). The key benefit of this approach is that continuous gradient-guided optimization can efficiently generate new promising inputs with a few targeted mutations based on the gradient value and the step size rather than random unguided mutations used in evolutionary techniques. Gradient-guided optimizations have already been shown to significantly outperform evolutionary techniques in popular tasks like training of neural networks. Better fuzzers will significantly improve the security, reliability, and robustness of critical infrastructure software used by billions of users across the world. Data and tools will be made available through open source. Curriculum and training will be developed to disseminate the results. This project will develop a set of novel techniques and tools that will enable fuzzers to fully exploit the power of continuous optimization techniques like gradient descent. One of the key challenges behind applying continuous optimization for fuzzing is that real-world program behaviors often contain many discontinuities and thus are not directly amenable to smooth optimization. Therefore, the target programs must be smoothed before performing continuous optimization. This project will develop a new technique involving surrogate neural networks and graybox instrumentation that will automatically learn smooth approximations of discontinuous program behaviors. This project will further use global optimization schemes like branch-and-bound and cutting plane algorithms to avoid getting stuck at local optima due to the non-convexity of the target program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Fuzzing是一种自动化软件测试技术,涉及将无效,意外或罕见的数据流作为计算机程序的输入,用于发现导致崩溃,断言失败或内存损坏的错误。Fuzzing是查找软件漏洞的事实上的标准技术。 然而,尽管它们有着巨大的前景,但流行的模糊器,特别是对于大型程序,往往会陷入尝试冗余测试输入的困境,并难以找到隐藏在程序逻辑深处的安全漏洞。为了找到有趣的测试输入,大多数流行的模糊器使用进化算法,其从一组输入开始,对这些输入应用随机突变和交叉以生成新的输入,并应用适应度函数(例如,实现了代码覆盖),以选择用于下一组突变的最有希望的新输入。这项研究的关键见解是,使用连续优化技术的方法可以做得更好,通过更有效地使用底层函数的结构(例如,梯度或高阶导数)。 这种方法的主要好处是,连续梯度引导优化可以有效地生成新的有希望的输入,基于梯度值和步长的一些有针对性的突变,而不是进化技术中使用的随机无引导突变。在神经网络训练等热门任务中,直觉引导的优化已经被证明明显优于进化技术。更好的模糊器将显著提高全球数十亿用户使用的关键基础设施软件的安全性、可靠性和健壮性。数据和工具将通过开放源代码提供。将制定课程和培训,以传播成果。该项目将开发一套新的技术和工具,使模糊器能够充分利用梯度下降等连续优化技术的力量。将连续优化应用于模糊化的关键挑战之一是,现实世界的程序行为通常包含许多不连续性,因此不直接适用于平滑优化。因此,在执行连续优化之前,必须对目标程序进行平滑。这个项目将开发一种新的技术,涉及代理神经网络和灰盒仪器,将自动学习不连续的程序行为的平滑近似。该项目将进一步使用全局优化方案,如分支定界和切割平面算法,以避免由于目标程序的非凸性而陷入局部最优。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suman Jana其他文献

Accurate Data Race Prediction in the Linux Kernel through Sparse Fourier Learning
通过稀疏傅里叶学习在 Linux 内核中准确预测数据竞争
Mathematical modeling of impulse island controller to safely store the energy from high‐voltage lightning impulse
安全存储高压雷电冲击能量的冲击岛控制器数学模型
  • DOI:
    10.1002/est2.325
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Suman Jana;P. Biswas;Chiranjit Sain
  • 通讯作者:
    Chiranjit Sain
Analysis of Realtime Inverter for Kite Energy System Using TI -C2000 Microcontroller
采用TI -C2000微控制器的风筝能源系统实时逆变器分析
Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load
可再生能源系统中超级电容存储的集成比较二级和五级逆变器与RL型负载的响应
  • DOI:
    10.1063/1.5032071
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suman Jana;P. Biswas;Upama Das
  • 通讯作者:
    Upama Das

Suman Jana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suman Jana', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Machine Learning for Cybersecurity: Robustness Against Concept Drift
协作研究:SaTC:核心:小型:网络安全机器学习:针对概念漂移的稳健性
  • 批准号:
    2154874
  • 财政年份:
    2022
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Trustworthy Deep Neural Network Based AI: A Systems Approach
SaTC:核心:媒介:协作:迈向基于可信深度神经网络的人工智能:一种系统方法
  • 批准号:
    1801426
  • 财政年份:
    2018
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
  • 批准号:
    1617670
  • 财政年份:
    2016
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant

相似海外基金

Ultra-efficient electric boats
超高效电动船
  • 批准号:
    10099049
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Collaborative R&D
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
  • 批准号:
    EP/Y002482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了