Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
基本信息
- 批准号:EP/Y002482/1
- 负责人:
- 金额:$ 21.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The chemical industries are heavily reliant on crude oil, a finite and unsustainable resource with global price fluctuations with negative impact on global economies. Depleting petrochemical reserves, coupled with unprecedented rise in global carbon emissions triggering severe weather events, represent the driving forces behind the development of environmentally sound, sustainable alternatives and to curb our reliance on fossil-based resources. Industrial biotechnology using microbial cell factories has entered an era where scientific and technological advances in bioengineering can contribute appreciably towards sustainable product development using renewable carbon feedstocks. Utilization of waste and greenhouse gases such as CO2 or CH4 to produce valuable products, thereby reducing carbon emissions and creating net-zero circular economies, should be at the forefront of the governments sustainable industrial decarbonization policies. These waste gases have the potential to become the third generation sustainable and techno economically feasible feedstocks. C1 gas consuming aerobic bacteria possess significant advantages over their anaerobic counterparts such as wider product spectrum, higher productivities and genetic amenability. However, the flammability concerns of H2 and O2 mixtures limit optimum O2 concentrations in aerobic gas fermentations. Lower O2 concentrations mean higher mass transfer requirements are necessary for a viable fermentation process. This is a known problem in a typical industrial aerobic fermentation and the problem is only exacerbated in aerobic gas fermentation where O2 concentration are limited. An alternative process design is therefore pivotal for an economically feasible process within the capital cost context of industrial gas fermentation.Microbial electrosynthesis combines electrochemistry and biotechnology in a resource-efficient processes by relying on waste raw materials and renewable energies. Electro-biotechnology strives for the concept of power-to-chemicals to narrow or even close the gap between the energy and the chemistry sector. Electrogenic /electroactive bacteria (EAB) such as, Geobacter sulfurreducens and Shewanella oneidensis are natural carriers of extracellular electron transfer pathways and are extensively studied, however O2 sensitivity and lack of genetic tools have limited the use of these bacteria mostly for bioremediation purposes.In this project we aim to design and set up a bioprocess platform that will enable the assessment of electro-fermentative potential of biocatalysts for the production of value-added chemicals. This platform will be used to elucidate the genetic basis of external electron transfer (EET) in Cupriavidus metallidurans CH34, a facultative anaerobic, CO2 consuming bacteria. This collaborative multidisciplinary study aims to use complimentary approaches in electrochemical characterisation and engineering biology to elucidate and validate the EET mechanism in this bacterium. This will be followed by demonstrating its potential in a bio-electro fermentation process, producing a valuable product from CO2. Elucidating the exact mechanism of EET in this bacterium will also open doors to potentially transfer this mechanism to its close relative, Cupriavidus necator H16 which is proven to be an efficient autotrophic bacterium converting CO2 to highly valuable products. With the unique and complementary skills from the PI (bioprocess enigneering/development), the Co-I (synthetic biology) and the international partners (sustainable electrochemistry), via effective knowledge exchange activities, including outreach activities, we will showcase the integration of this technology within the current chemical industries as a prime example for sustainable industrial decarbonisation.
化学工业严重依赖原油,这是一种有限和不可持续的资源,全球价格波动对全球经济产生负面影响。石化储量的枯竭,加上全球碳排放量前所未有的增加,引发恶劣天气事件,是开发环保、可持续替代品并遏制我们对化石资源依赖的驱动力。利用微生物细胞工厂的工业生物技术已进入一个时代,在这个时代,生物工程方面的科学和技术进步可大大有助于利用可再生碳原料进行可持续产品开发。利用废物和二氧化碳或甲烷等温室气体生产有价值的产品,从而减少碳排放并创造净零循环经济,应该成为政府可持续工业脱碳政策的重点。这些废气有可能成为第三代可持续和技术经济可行的原料。C1耗气菌具有产气谱广、产气率高、遗传适应性强等优势。然而,H2和O2混合物的可燃性问题限制了好氧气体发酵中的最佳O2浓度。较低的O2浓度意味着更高的传质要求是可行的发酵过程所必需的。这是典型的工业需氧发酵中的已知问题,并且该问题仅在O2浓度有限的需氧气体发酵中加剧。因此,在工业气体发酵的资本成本背景下,替代工艺设计是经济可行的工艺的关键。微生物电合成通过依赖废弃原料和可再生能源,将电化学和生物技术结合在资源高效的工艺中。电生物技术致力于电力到化学品的概念,以缩小甚至关闭能源和化学部门之间的差距。产电/电活性细菌(EAB),例如硫还原地芽孢杆菌和奥奈希瓦氏菌(Shewanella oneidensis)是细胞外电子传递途径的天然载体,并且被广泛研究,然而,O2敏感性和缺乏遗传工具限制了这些细菌主要用于生物修复目的。在本项目中,我们的目标是设计和建立一个生物过程平台,发酵潜力的生物催化剂生产增值化学品。该平台将用于阐明Cupriavidus metallidurans CH 34(一种兼性厌氧CO2消耗菌)外部电子转移(EET)的遗传基础。这项多学科合作研究旨在使用电化学表征和工程生物学中的互补方法来阐明和验证这种细菌中的EET机制。随后将展示其在生物电发酵过程中的潜力,从二氧化碳中生产有价值的产品。阐明EET在这种细菌中的确切机制也将打开大门,可能将这种机制转移到其近亲,钩虫贪铜菌H16,这被证明是一种有效的自养细菌,将CO2转化为高价值的产品。凭借PI(生物工艺设计/开发),Co-I(合成生物学)和国际合作伙伴(可持续电化学)的独特和互补技能,通过有效的知识交流活动,包括推广活动,我们将展示该技术在当前化学工业中的整合,作为可持续工业脱碳的主要范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Reddy Bommareddy其他文献
Establishing Mixotrophic Growth of Cupriavidus necator H16 on CO2 and Volatile Fatty Acids
建立 Cupriavidus necator H16 在 CO2 和挥发性脂肪酸上的混合营养生长
- DOI:
10.3390/fermentation8030125 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kamran Jawed;V. Irorere;Rajesh Reddy Bommareddy;N. Minton;K. Kovács - 通讯作者:
K. Kovács
Rajesh Reddy Bommareddy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Development of continuous process on ethanol fermentation by dimorphic Mucor sp. with control of morphological changing factor
二态毛霉连续乙醇发酵工艺的开发。
- 批准号:
23K13866 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
- 批准号:
10777339 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Enhancing the nutritional quality of novel whole-cut meat alternatives, using fungal fermentation, biofortification and process innovation
利用真菌发酵、生物强化和工艺创新提高新型全切肉替代品的营养品质
- 批准号:
10075636 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Collaborative R&D
Discovery and characterization of synthetic bioinformatic natural product anticancer agents
合成生物信息天然产物抗癌剂的发现和表征
- 批准号:
10639302 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Recombinant production of structured fats that mimic human milk fat
重组生产模仿人乳脂肪的结构脂肪
- 批准号:
10822765 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
A Novel Immunological-Directed Biotherapy for Treating Rheumatoid Arthritis
治疗类风湿关节炎的新型免疫导向生物疗法
- 批准号:
10760183 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
2023 Lactic Acid Bacteria Biology, Symbioses and Applications GRC
2023年乳酸菌生物学、共生体和应用GRC
- 批准号:
10683583 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别: