CAREER: Guaranteed Nonconvex Optimization for High-Dimensional Learning
职业:高维学习的有保证的非凸优化
基本信息
- 批准号:1846369
- 负责人:
- 金额:$ 54.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Contemporary nonconvex learning approaches in signal processing and machine learning are revolutionizing our ability to process data in their natural form, bringing transformative changes to modern life ranging from web searches and social networks to healthcare, commerce, and imaging. Despite wide empirical success in applications, these learning schemes lack a clear mathematical foundation that can enable not only rigorous performance analysis but can guide system designs based on an understanding of what would work, when and why. This project aims to develop a unified framework to design and analyze efficient nonconvex optimization algorithms. The resulting signal estimation and learning algorithms will be deployed in novel applications aimed at learning understandable models from data, which in turn will allow for better systems that can acquire data faster and at higher resolution and quality. Components from this project are integrated into an advanced graduate class and select results will serve to motivate K-12 students to pursue careers in STEM (Science, Technology, Engineering and Math).In this project, the investigator studies a family of iterative algorithms for nonconvex data fitting problems that arise in modern signal processing and artificial intelligence, such as phaseless imaging and neural network training. The overarching goal of the project is to understand when these algorithms converge to globally optimal solutions and to characterize their behavior and convergence rate in terms of key quantities such as the number of data samples/observations, prior knowledge about the model, initialization accuracy, etc. The theoretical investigations utilize techniques from high-dimensional probability, statistics, optimization and nonlinear dynamics in control. The theoretical analysis guides the design of more reliable learning algorithms that can seamlessly scale to massive data sizes and are robust to node failures that arise in modern distributed computing environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信号处理和机器学习中的当代非凸学习方法正在彻底改变我们处理自然形式数据的能力,为现代生活带来革命性的变化,从网络搜索和社交网络到医疗保健、商业和成像。尽管在应用中取得了广泛的经验成功,但这些学习方案缺乏明确的数学基础,该基础不仅可以进行严格的性能分析,而且可以基于对什么是有效的、何时有效以及为什么有效的理解来指导系统设计。该项目旨在开发一个统一的框架来设计和分析高效的非凸优化算法。由此产生的信号估计和学习算法将部署在旨在从数据中学习可理解的模型的新颖应用中,这反过来又将允许更好的系统能够更快地以更高的分辨率和质量获取数据。该项目的组成部分被整合到高级研究生课程中,选定的结果将有助于激励 K-12 学生追求 STEM(科学、技术、工程和数学)职业。在该项目中,研究人员研究了一系列迭代算法,用于解决现代信号处理和人工智能(例如无相成像和神经网络训练)中出现的非凸数据拟合问题。该项目的总体目标是了解这些算法何时收敛到全局最优解,并根据数据样本/观测数量、模型先验知识、初始化精度等关键量来表征其行为和收敛速度。理论研究利用高维概率、统计、优化和控制中的非线性动力学技术。理论分析指导设计更可靠的学习算法,这些算法可以无缝扩展到海量数据规模,并且对现代分布式计算环境中出现的节点故障具有鲁棒性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization
- DOI:10.1109/tit.2019.2891653
- 发表时间:2017-02
- 期刊:
- 影响因子:2.5
- 作者:M. Soltanolkotabi
- 通讯作者:M. Soltanolkotabi
Understanding Overparameterization in Generative Adversarial Networks
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Y. Balaji;M. Sajedi;N. Kalibhat;Mucong Ding;Dominik Stöger;M. Soltanolkotabi;S. Feizi
- 通讯作者:Y. Balaji;M. Sajedi;N. Kalibhat;Mucong Ding;Dominik Stöger;M. Soltanolkotabi;S. Feizi
Don't Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory
- DOI:10.48550/arxiv.2307.00497
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Sara Babakniya;Zalan Fabian;Chaoyang He;M. Soltanolkotabi;S. Avestimehr
- 通讯作者:Sara Babakniya;Zalan Fabian;Chaoyang He;M. Soltanolkotabi;S. Avestimehr
FedNLP: Benchmarking Federated Learning Methods for Natural Language Processing Tasks
- DOI:10.18653/v1/2022.findings-naacl.13
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Bill Yuchen Lin;Chaoyang He;ZiHang Zeng;Hulin Wang;Yufen Huang;M. Soltanolkotabi;Xiang Ren;S. Avestimehr
- 通讯作者:Bill Yuchen Lin;Chaoyang He;ZiHang Zeng;Hulin Wang;Yufen Huang;M. Soltanolkotabi;Xiang Ren;S. Avestimehr
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
- DOI:
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Samet Oymak;M. Soltanolkotabi
- 通讯作者:Samet Oymak;M. Soltanolkotabi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahdi Soltanolkotabi其他文献
Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction
梯度下降可证明解决非线性断层扫描重建问题
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sara Fridovich;Fabrizio Valdivia;Gordon Wetzstein;Benjamin Recht;Mahdi Soltanolkotabi - 通讯作者:
Mahdi Soltanolkotabi
Mahdi Soltanolkotabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahdi Soltanolkotabi', 18)}}的其他基金
CIF: Small: Precise Computational and Statistical Tradeoffs for Iterative Signal Estimation and Supervised Learning
CIF:小:迭代信号估计和监督学习的精确计算和统计权衡
- 批准号:
1813877 - 财政年份:2018
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
- 批准号:
2331878 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
- 批准号:
2331879 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Learning Coordination for Multi-Autonomous Multi-Human (MAMH) Agent Systems with Guaranteed Safety
具有安全保证的多自主多人(MAMH)代理系统的学习协调
- 批准号:
2332210 - 财政年份:2024
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Local Differential Privacy Technology with Guaranteed Transparency
本地差分隐私技术,保证透明度
- 批准号:
23K11110 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fusing a future from Glasgow’s proud heritage: Schedule Guaranteed High-Integrity Structures for a Secure, Safe and Resilient Transition to Net Zero
融合格拉斯哥引以为傲的传统的未来:时间表保证的高完整性结构,以安全、安全和有弹性地过渡到净零
- 批准号:
10054861 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Collaborative R&D
SHF: Small: A Distributed Scalable End-to-End Tail Latency SLO Guaranteed Resource Management Framework for Microservices
SHF:Small:分布式可扩展端到端尾部延迟 SLO 保证的微服务资源管理框架
- 批准号:
2226117 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Exploring Cosmic Noon and Cosmic Dawn with JWST Guaranteed Time Observations
利用 JWST 保证时间观测探索宇宙正午和宇宙黎明
- 批准号:
RGPIN-2020-06023 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




