Learning Coordination for Multi-Autonomous Multi-Human (MAMH) Agent Systems with Guaranteed Safety
具有安全保证的多自主多人(MAMH)代理系统的学习协调
基本信息
- 批准号:2332210
- 负责人:
- 金额:$ 34.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The operation of many real-world systems involves the co-existence of human and autonomous agents. Inadequate coordination among these agents can lead to significant performance degradation or safety risks. This project aims to develop a novel framework for Multi-Autonomous Multi-Human coordination, which enhances algorithmic scalability and safety guarantees. Compared with traditional optimization and machine learning approaches, the proposed framework addresses two major challenges: (i) the non-cooperative nature of the system, which arises from information asymmetry between humans and robots, heterogeneity in human preferences, and human selfishness in decision-making when working with robots; and (ii) coordination safety, which is of critical importance in the presence of human agents but is difficult to measure using traditional black-box learning models. Additionally, human behaviors are subject to uncertainties, which may easily deviate the actual coordination from intended ones.To address these challenges, the intellectual merits of this research lie in its innovative integration of game theory, machine learning, human modeling, and network control theory, resulting in a framework for Multi-Autonomous Multi-Human coordination that enhances both model transparency and learnability. Core to the framework is a novel human-response alignment mechanism, allowing autonomous agents in the system to not only passively adapt to human behaviors but also subtly guide them, enhancing the efficiency and safety of the entire system. To facilitate this, computationally scalable and efficient algorithms will be developed in the manner of distributed-training-distributed execution, purely based on agents’ local resources for communication and computation. The broader impacts of this work extend to various engineering practices, including traffic coordination, human-robot teaming, and power/IoT systems involving human users. The project has a special emphasis on workforce development and education. A carefully designed "RoboArt" event will engage K-12 students, fostering creativity, problem-solving skills, and STEM exposure. The project will also offer multidisciplinary learning and research opportunities for high school and university students, ensuring inclusive access to the evolving field of robotics and machine learning. Furthermore, the project will contribute valuable datasets to the research community, emphasizing accessibility and re-usability to facilitate ongoing innovation in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现实世界的系统的操作涉及人类和自治代理的共存。这些代理之间的协调不足可能导致重大性能下降或安全风险。该项目旨在开发一种新的多自治多人协调框架,增强算法的可扩展性和安全性保证。与传统的优化和机器学习方法相比,所提出的框架解决了两个主要挑战:(i)系统的非合作性质,这是由人类和机器人之间的信息不对称,人类偏好的异质性以及与机器人一起工作时人类决策的自私性引起的;以及(ii)协调安全性,这在人类代理存在的情况下至关重要,但难以使用传统的黑盒学习模型来测量。此外,人类行为的不确定性,这可能会很容易偏离实际的协调从预期的,为了应对这些挑战,本研究的智力价值在于它的创新整合博弈论,机器学习,人类建模和网络控制理论,从而产生一个框架,多自治多人协调,提高模型的透明度和可学习性。该框架的核心是一种新颖的人类响应对齐机制,允许系统中的自主代理不仅被动地适应人类行为,而且还巧妙地引导它们,从而提高整个系统的效率和安全性。为了促进这一点,计算上可扩展的和有效的算法将被开发的分布式训练分布式执行的方式,纯粹基于代理的本地资源进行通信和计算。这项工作的更广泛影响扩展到各种工程实践,包括交通协调、人机协作以及涉及人类用户的电力/物联网系统。该项目特别强调劳动力发展和教育。精心设计的“RoboArt”活动将吸引K-12学生,培养创造力,解决问题的能力和STEM曝光。该项目还将为高中和大学生提供多学科学习和研究机会,确保包容性地进入不断发展的机器人和机器学习领域。此外,该项目将为研究界提供有价值的数据集,强调可访问性和可重用性,以促进该领域的持续创新。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuan Wang其他文献
Hydrogen Sulfide Promotes Cell Proliferation and Melanin Synthesis in Primary Human Epidermal Melanocytes
硫化氢促进原代人表皮黑素细胞的细胞增殖和黑色素合成
- DOI:
10.1159/000506818 - 发表时间:
2020-06 - 期刊:
- 影响因子:0
- 作者:
Jiayi Ying;Qianqian Wang;Min Jiang;Xiuxiu Wang;Wenjie Liu;Xuan Wang;Chengfeng Zhang;Leihong Xiang - 通讯作者:
Leihong Xiang
A General Set of DNA-Compatible Reactions for Preparing DNA-Tagged Multisubstituted Pyrroles
用于制备 DNA 标记的多取代吡咯的一组通用 DNA 相容反应
- DOI:
10.1021/acs.bioconjchem.1c00427 - 发表时间:
2021 - 期刊:
- 影响因子:4.7
- 作者:
Jingjing Qi;Sixiu Liu;Mengnisa Seydimemet;Xuan Wang;Xiaojie Lu - 通讯作者:
Xiaojie Lu
Tackling organizational wicked problems: a heuristics study based on a qualitative comparative analysis approach
解决组织的棘手问题:基于定性比较分析方法的启发式研究
- DOI:
10.1108/cms-04-2022-0140 - 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Xuan Wang;Mimi Xiao;L. Jia - 通讯作者:
L. Jia
the Rolling Bearing Fault Feature Extraction Method Under Variable Conditions Based on Hilbert-Huang Transform and Singular Value Decomposition
基于Hilbert-Huang变换和奇异值分解的变工况滚动轴承故障特征提取方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hongmei Liu;Xuan Wang;Chen Lu - 通讯作者:
Chen Lu
Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning
基于深度强化学习的瞬态热源下有机朗肯循环过热度控制
- DOI:
10.1016/j.apenergy.2020.115637 - 发表时间:
2020-11 - 期刊:
- 影响因子:11.2
- 作者:
Xuan Wang;Rui Wang;Ming Jin;Gequn Shu;Hua Tian;Jiaying Pan - 通讯作者:
Jiaying Pan
Xuan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuan Wang', 18)}}的其他基金
CAREER: Systems-Level Identification and Characterization of Cellular Export and Efflux Systems for Renewable Chemicals
职业:可再生化学品的细胞输出和流出系统的系统级识别和表征
- 批准号:
1942825 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
相似海外基金
ERI: Adaptive and Resilient Communication-Aware Multi-Robot Coordination
ERI:自适应和弹性通信感知多机器人协调
- 批准号:
2301749 - 财政年份:2023
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Creation of multi-component coordination self-assemblies under kinetic control
动力学控制下多组分协调自组装体的创建
- 批准号:
23H01970 - 财政年份:2023
- 资助金额:
$ 34.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
- 批准号:
10744561 - 财政年份:2023
- 资助金额:
$ 34.46万 - 项目类别:
Multi-dimensional networks based on polycyclic organic neutral radicals with hydrogen-bonds and coordination-bonds
基于具有氢键和配位键的多环有机中性自由基的多维网络
- 批准号:
23K04710 - 财政年份:2023
- 资助金额:
$ 34.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic Multi-state Living Coordination Polymerization for Next Generation Polyolefins
下一代聚烯烃的动态多态活性配位聚合
- 批准号:
2247554 - 财政年份:2023
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Computationally analyzing the hierarchical complexity of infants' social coordination on multi scales in natural daily life to investigate infants' cognitive development
计算分析自然日常生活中婴儿多尺度社会协调的层次复杂性,以研究婴儿的认知发展
- 批准号:
22K20314 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
- 批准号:
2147641 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Intelligent Coordination for Multi-Agent Systems
多智能体系统的智能协调
- 批准号:
RGPIN-2020-06540 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
- 批准号:
2147631 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
- 批准号:
2129949 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant