CAREER: Contingent Learning in a Structured World
职业:结构化世界中的条件学习
基本信息
- 批准号:1846578
- 负责人:
- 金额:$ 75.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How the brain forms, tunes, and uses predictive models that specify the causal links between stimuli in the environment, our choices, and their outcomes is a fundamental question in Psychology and Neuroscience. In order to make good predictions in a complex world, the brain needs to attribute good and bad outcomes to their most likely causes, a problem known as "credit assignment". There is presently limited understanding of how people attribute outcomes to their most likely causes in real-world environments. Recent evidence suggests that humans can use an understanding of the environment's causal structure to attribute outcomes to their most likely causes ("model-based credit assignment"), rather than only attributing them to the most recently made choices ("model-free credit assignment"), as standard models posit. Dr. Boorman's research will develop the first neurally-inspired theory of model-based credit assignment. The insights from this basic science research have the potential to inform (1) theories about human cognition more broadly; (2) targeted education programs that leverages a better understanding of how learning works in the human brain; (3) mechanistic predictions for application to Artificial Intelligence research; and (4) principled investigations into potential biomarkers and treatment targets for psychiatric disorders such as Schizophrenia and PTSD, with deficits that include abnormal credit assignment.The overarching goal of this proposal is to elucidate how the human brain attributes reinforcement outcomes to their likely causes, or "credit assignment". Recent evidence suggests the brain can harness a model of the environment or task structure to assign credit for outcomes adaptively ("model-based credit assignment"), in addition to the most recently made choices ("model-free credit assignment"). Dr. Boorman's proposed research will integrate multivariate analysis methods with Bayesian models that formalize updating and inference, and apply them to fMRI, EEG, and TMS data. Insights from this fundamental research will inform mechanistic models of human learning, theories of cognition more broadly, reinforcement learning in Artificial Intelligence research, and investigations into psychiatric disorders with deficits that include abnormal credit assignment, such as Schizophrenia and PTSD.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑如何形成、调整和使用预测模型,这些模型指定了环境中的刺激、我们的选择及其结果之间的因果关系,这是心理学和神经科学中的一个基本问题。为了在复杂的世界中做出正确的预测,大脑需要将好的和坏的结果归因于最可能的原因,这就是所谓的“信用分配”问题。目前,人们对现实世界环境中人们如何将结果归因于最可能的原因的理解有限。最近的证据表明,人类可以利用对环境因果结构的理解来将结果归因于最可能的原因(“基于模型的信用分配”),而不是像标准模型那样仅将其归因于最近做出的选择(“无模型信用分配”)。 Boorman博士的研究将开发第一个基于模型的信用分配神经启发理论。 这项基础科学研究的见解有可能为以下方面提供信息:(1)更广泛的人类认知理论;(2)有针对性的教育计划,以更好地了解人类大脑中的学习方式;(3)应用于人工智能研究的机械预测;和(4)对精神障碍如精神分裂症和创伤后应激障碍的潜在生物标志物和治疗靶点的原则性研究,与赤字,包括异常信用分配。这一建议的首要目标是阐明人脑如何属性强化结果,以他们可能的原因,或“信用分配”。最近的证据表明,大脑可以利用环境或任务结构的模型来自适应地为结果分配信用(“基于模型的信用分配”),以及最近做出的选择(“无模型信用分配”)。Boorman博士提出的研究将整合多变量分析方法与贝叶斯模型,形式化更新和推理,并将其应用于fMRI,EEG和TMS数据。 这项基础研究的见解将为人类学习的机械模型、更广泛的认知理论、人工智能研究中的强化学习以及对包括异常信用分配在内的精神疾病的调查提供信息,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural mechanisms of credit assignment for inferred relationships in a structured world
结构化世界中推断关系的信用分配神经机制
- DOI:10.1016/j.neuron.2022.05.021
- 发表时间:2022
- 期刊:
- 影响因子:16.2
- 作者:Witkowski, Phillip P.;Park, Seongmin A.;Boorman, Erie D.
- 通讯作者:Boorman, Erie D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erie Boorman其他文献
Erie Boorman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erie Boorman', 18)}}的其他基金
Mechanisms for causal and non-causal predictive learning
因果和非因果预测学习机制
- 批准号:
2022685 - 财政年份:2020
- 资助金额:
$ 75.39万 - 项目类别:
Standard Grant
相似海外基金
The choice of partial versus full acquisition modes in cross-border deals and the contingent role of industries
跨境交易中部分收购与全部收购模式的选择以及行业的权变作用
- 批准号:
23K12544 - 财政年份:2023
- 资助金额:
$ 75.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Effect of Accomplishment of Plans and Contingent Experiences on the Evaluation of Tourism Experiences during Travel - Travel planning and Serendipity.
计划的完成和偶然经历对旅行期间旅游体验评估的影响 - 旅行计划和偶然性。
- 批准号:
23K17125 - 财政年份:2023
- 资助金额:
$ 75.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating Ih Biophysical Epigenetic Modifications in VTA Dopaminergic Neurons after Contingent and Non-Contingent Cocaine Administration
阐明偶然和非偶然可卡因给药后 VTA 多巴胺能神经元的 Ih 生物物理表观遗传修饰
- 批准号:
10664946 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Elucidating Ih Biophysical Epigenetic Modifications in VTA Dopaminergic Neurons after Contingent and Non-Contingent Cocaine Administration
阐明偶然和非偶然可卡因给药后 VTA 多巴胺能神经元的 Ih 生物物理表观遗传修饰
- 批准号:
10797209 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Non-Contingent Acute Pain Stress Drives Analgesic Protection in Rats.
非偶然急性疼痛应激驱动大鼠镇痛保护。
- 批准号:
575854-2022 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
PFI (MCA): Price and Lead Time Quotation for Make-to-Order Firms with Contingent Demand and Demand Learning
PFI (MCA):具有或有需求和需求学习的按订单生产公司的价格和交货时间报价
- 批准号:
2223752 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Standard Grant
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Discovery Grants Program - Individual
Elucidating Ih Biophysical Epigenetic Modifications in VTA Dopaminergic Neurons after Contingent and Non-Contingent Cocaine Administration
阐明偶然和非偶然可卡因给药后 VTA 多巴胺能神经元的 Ih 生物物理表观遗传修饰
- 批准号:
10411408 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Personalized Contingent Neurostimulation for Epilepsy by Machine Learning in Organic Brain Interfaces
通过有机脑接口中的机器学习对癫痫进行个性化偶然神经刺激
- 批准号:
549625-2020 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Collaborative Health Research Projects
Non-contingent processes in reading
阅读中的非偶然过程
- 批准号:
RGPIN-2020-04150 - 财政年份:2022
- 资助金额:
$ 75.39万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




