Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
基本信息
- 批准号:RGPIN-2017-05441
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research plan centres on two sets of linked and complementary quantitative finance research programs: 1) simulation, optimal control, and numerical methods in finance; and 2) studies in contingent capital securities. The first project focusses on efficient methods for pricing and risk management of derivative securities with early exercise features. These techniques are important to financial institutions and investors for trading and internal risk management processes and also for determining required capital levels to satisfy both internal and external (regulatory) demands. Monte Carlo methods will be extensively studied, along with some other numerical methods suited for such problems. Results from this work have broader applications such as financial portfolio management, the operation of power generating stations, and the optimal scheduling of maintenance in large systems such as a series of reservoirs. Since the 2008 financial crisis there has been renewed interest by governments and regulators to find ways to avoid taxpayer-funded bailouts of financial institutions (FIs), with contingent capital (CoCo) garnering much of this interest. CoCos are instruments that are debt (or preferred shares) when issued and that convert to common equity when the issuing FI is in financial distress. Conversion has the effect of re-capitalizing the FI exactly when it would be most difficult for them to raise funds in capital markets through the issuance of new securities. Additionally, conversion dilutes the ownership stake of the pre-conversion shareholders and may potentially curb excessive risk taking in the financial industry as losses will be imposed on the firm's investors, rather than taxpayers. There is no standard set of terms for CoCos and the properties of CoCos vary depending on the conditions that trigger conversion and the number of common shares that CoCo holders receive upon conversion (e.g., the conversion price). Results from this proposal will deepen our understanding of the properties of CoCos, allow regulators the proper tools to assess various CoCo designs, and provide issuers and investors more clarity on CoCo value. Additionally, the research will explore related pricing and risk-management issues associated with CoCos, such as how an issuer can manage interest-rate risk on CoCo liabilities, with the possibility of conversion changing this liability to non-interest-paying equity. A thorough understanding of CoCos, including design specifications, pricing and hedging models, and the associated financial and risk objectives will have important societal benefits. Well-designed CoCos will strengthen both individual FIs and, as a result, the financial system, making taxpayer-funded bailouts less likely. Furthermore, this understanding will help facilitate issuance and secondary market trading, potentially lowering the cost of capital.
本研究计划围绕两套相互联系和互补的定量金融研究方案展开:1)金融学中的模拟、最优控制和数值方法;2)或有资本证券的研究。第一个项目侧重于具有早期行权特征的衍生证券的有效定价和风险管理方法。这些技术对于金融机构和投资者的交易和内部风险管理过程以及确定满足内部和外部(监管)要求所需的资本水平非常重要。蒙特卡罗方法将被广泛研究,以及其他一些适合于这类问题的数值方法。本研究成果在金融投资组合管理、电站运行、水库等大型系统的优化维护调度等方面具有广泛的应用前景。自2008年金融危机以来,政府和监管机构重新开始关注如何避免纳税人为金融机构(fi)提供救助,其中或有资本(CoCo)获得了很大的兴趣。coco是一种工具,在发行时是债务(或优先股),在发行金融机构陷入财务困境时转换为普通股。当金融机构很难通过发行新证券在资本市场上筹集资金时,转换具有重新资本化金融机构的作用。此外,转换稀释了转换前股东的股权,并可能潜在地抑制金融业的过度冒险,因为损失将由公司的投资者而不是纳税人承担。CoCo没有标准的条款集,CoCo的属性取决于触发转换的条件和CoCo持有人在转换时收到的普通股数量(例如,转换价格)。该提案的结果将加深我们对CoCo属性的理解,为监管机构提供适当的工具来评估各种CoCo设计,并为发行人和投资者提供更清晰的CoCo价值。此外,本研究将探讨与CoCo相关的定价和风险管理问题,例如发行人如何管理CoCo负债的利率风险,以及将该负债转换为不付息股权的可能性。全面了解CoCos,包括设计规范、定价和对冲模型,以及相关的财务和风险目标,将具有重要的社会效益。精心设计的CoCos将强化单个金融机构,进而强化金融体系,降低纳税人出资纾困的可能性。此外,这种理解将有助于促进发行和二级市场交易,从而有可能降低资金成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reesor, Ronald其他文献
Reesor, Ronald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reesor, Ronald', 18)}}的其他基金
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2017
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
- 批准号:
2327379 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Development of the quantitative simulation and optimal strategy formulation method for a disaster recovery society with comprehensive knowledge of recovery
开发具有全面恢复知识的灾后恢复社会的定量模拟和优化策略制定方法
- 批准号:
23H00218 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308409 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Mapping populations to patients: designing optimal ablation therapy for atrial fibrillation through simulation and deep learning of digital twins
将人群映射到患者:通过数字孪生的模拟和深度学习设计房颤的最佳消融治疗
- 批准号:
MR/W004720/1 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Determination of optimal design of orthodontic appliances using artificial intelligence and simulation of long-term tooth movement
利用人工智能确定正畸矫治器的最佳设计并模拟长期牙齿移动
- 批准号:
21K17188 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Optimal control simulation of ultrafast coherent dynamics of ferroic systems
铁系统超快相干动力学的最优控制模拟
- 批准号:
20K05414 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies in Simulation, Optimal Control, Risk Management and Contingent Capital
模拟、最优控制、风险管理和或有资本研究
- 批准号:
RGPIN-2017-05441 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual