CAREER: Reconfigurable Electro-Fluidic Prescriptions (REFRx): Data-Driven Biosensors for Detection and Treatment of Multidrug-Resistant Cancers

职业:可重构电液处方 (REFRx):用于检测和治疗多重耐药癌症的数据驱动生物传感器

基本信息

  • 批准号:
    1846740
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This proposal is to develop an instrument that can rapidly identify drug resistant cancer cells in tumors and prescribe a course of treatment for the patient that minimizes chance of cancer recurrence. Drug resistance is one of the greatest impediments to treating both cancer and infectious disease and has been identified as one of the greatest public health threats of the next several decades. The proposed miniaturized instrument can be utilized for rapidly screening cancer patients for drug resistance and identifying the key molecular players involved and selecting optimal cancer treatment drugs. In this work, a microfluidics/electronic/data-driven crosscut approach is proposed to enable a rapid technology that can identify drug resistant cells using machine learning and examine the key protein pathways resulting in resistance using a label-free sensing array. The proposed platform is adaptive and reconfigures itself to assay the relevant proteins on-demand and avoids a resource-hungry brute force approach. This interdisciplinary project will engage and train both graduate and undergraduate students in various areas. The PI will also engage K-12 students through outreach workshops, local industry through educational lectures, and the general public through development of an online course, resulting in broad dissemination of knowledge. A new class of data-driven biosensors will be developed that can adapt themselves on-demand to detect and treat multidrug resistant cancers. Treatment of multi-drug resistance in cancer is difficult using static analysis platforms because of the rapid ability of tumor sub-clones to mutate and become insusceptible to a chemotherapeutic drug, thus an adaptive approach can be more efficient. An all-electronic platform will be developed for rapidly sorting drug resistant cells and adaptively analyzing the molecular pathways involved in resistance using a reconfigurable array of sensors. The analyzer will iteratively detect drug resistant cells using reconfigurable impedance cytometry in conjunction with machine learning, then sort them using dielectrophoresis (DEP), analyze them using a reconfigurable array of label-free protein sensors, and then use a machine learning classifier to further sub-type the drug resistant cells to select a drug combination to test in the subsequent iteration. An integrated closed-loop feedback system will be fabricated and characterized for sorting drug-sensitive and drug-resistant cells, and analyze differential expression of potential drug-resistance pathways iteratively against key drug candidates. The result of this research will be a new class of data-driven biosensors that can detect and sub-type drug resistant cancer cells from a breast tumor tissue that can be broadly applied to a multitude of biomedical applications including anti-microbial resistance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案旨在开发一种仪器,可以快速识别肿瘤中的耐药癌细胞,并为患者提供治疗过程,最大限度地减少癌症复发的机会。耐药性是治疗癌症和传染病的最大障碍之一,已被确定为未来几十年最大的公共卫生威胁之一。所提出的小型化仪器可用于快速筛查癌症患者的耐药性,并确定所涉及的关键分子参与者和选择最佳的癌症治疗药物。在这项工作中,提出了一种微流体/电子/数据驱动的横切方法,以实现一种快速技术,该技术可以使用机器学习识别耐药细胞,并使用无标记传感阵列检查导致耐药性的关键蛋白质途径。拟议的平台具有自适应性,可自行重新配置以按需检测相关蛋白质,并避免了消耗资源的强力方法。这个跨学科的项目将从事和培训研究生和本科生在各个领域。PI还将通过外联讲习班吸引K-12学生,通过教育讲座吸引当地行业,通过开发在线课程吸引公众,从而广泛传播知识。将开发一类新的数据驱动生物传感器,可以根据需要进行调整,以检测和治疗多药耐药癌症。使用静态分析平台治疗癌症中的多药耐药性是困难的,因为肿瘤亚克隆快速突变并变得对化疗药物不敏感的能力,因此自适应方法可能更有效。将开发一个全电子平台,用于快速分选耐药细胞,并使用可重新配置的传感器阵列自适应地分析与耐药性有关的分子途径。该分析仪将使用可重构阻抗细胞仪结合机器学习迭代检测耐药细胞,然后使用介电泳(DEP)对其进行分类,使用可重构的无标记蛋白传感器阵列对其进行分析,然后使用机器学习分类器进一步对耐药细胞进行分型,以选择药物组合在后续迭代中进行测试。一个集成的闭环反馈系统将被制造和表征,用于分选药物敏感和耐药细胞,并针对关键候选药物反复分析潜在耐药途径的差异表达。 这项研究的成果将是一类新的数据驱动的生物传感器,可以检测和亚型耐药癌细胞从乳腺肿瘤组织,可广泛应用于多种生物医学应用,包括抗菌药物耐药性。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell phone microscopy enabled low-cost manufacturable colorimetric urine glucose test
  • DOI:
    10.1007/s10544-023-00682-y
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Meng,Zhuolun;Raji,Hassan;Javanmard,Mehdi
  • 通讯作者:
    Javanmard,Mehdi
Rapid Assessment of Surface Markers on Cancer Cells Using Immuno-Magnetic Separation and Multi-frequency Impedance Cytometry for Targeted Therapy
  • DOI:
    10.1038/s41598-020-57540-7
  • 发表时间:
    2020-02-20
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Lin, Zhongtian;Lin, Siang-Yo;Javanmard, Mehdi
  • 通讯作者:
    Javanmard, Mehdi
A computer vision enhanced smart phone platform for microfluidic urine glucometry
  • DOI:
    10.1039/d3an01356a
  • 发表时间:
    2023-12-08
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Meng,Zhuolun;Tayyab,Muhammad;Javanmard,Mehdi
  • 通讯作者:
    Javanmard,Mehdi
Toward point-of-care assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning
  • DOI:
    10.1038/s41378-019-0073-2
  • 发表时间:
    2019-07-15
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ahuja, Karan;Rather, Gulam M.;Javanmard, Mehdi
  • 通讯作者:
    Javanmard, Mehdi
High Sensitivity and High Throughput Magnetic Flow CMOS Cytometers With 2D Oscillator Array and Inter-Sensor Spectrogram Cross-Correlation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Javanmard其他文献

Biosensors and machine learning for enhanced detection, stratification, and classification of cells: a review
  • DOI:
    10.1007/s10544-022-00627-x
  • 发表时间:
    2022-08-12
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Hassan Raji;Muhammad Tayyab;Jianye Sui;Seyed Reza Mahmoodi;Mehdi Javanmard
  • 通讯作者:
    Mehdi Javanmard
Enhancing glaucoma care with smart contact lenses: An overview of recent developments
  • DOI:
    10.1007/s10544-025-00740-7
  • 发表时间:
    2025-04-21
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Ali Fardoost;Koosha Karimi;Jaydeep Singh;Heneil Patel;Mehdi Javanmard
  • 通讯作者:
    Mehdi Javanmard
Electrical Detection of DNA Nanoballs Using Impedance Spectroscopy in a Microfluidic Chip
在微流控芯片中使用阻抗光谱法对 DNA 纳米球进行电检测
Wireless power-up and readout from a label-free biosensor
  • DOI:
    10.1007/s10544-024-00728-9
  • 发表时间:
    2025-01-10
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Hassan Raji;Pengfei Xie;Muhammad Tayyab;Zhuolun Meng;Seyed Reza Mahmoodi;Mehdi Javanmard
  • 通讯作者:
    Mehdi Javanmard

Mehdi Javanmard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehdi Javanmard', 18)}}的其他基金

Collaborative Research: A Microfluidic-CMOS Cross-cut Approach enabling Tri-Modal Biorecognition for Highly Accurate Viral Diagnostics
合作研究:一种微流控-CMOS 横切方法,可实现三模态生物识别,实现高精度病毒诊断
  • 批准号:
    1711165
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
IDBR: TYPE A- The ThruProt Analyzer: Bringing Proteomics to the Field Using a Sample-to-Answer Electronic Multiplexed Platform
IDBR:A 型 - ThruProt 分析仪:使用样本到答案电子多重平台将蛋白质组学带到现场
  • 批准号:
    1556253
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Neural-driven, active, and reconfigurable mechanical metamaterials (NARMM)
神经驱动、主动和可重构机械超材料 (NARMM)
  • 批准号:
    MR/X035506/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
  • 批准号:
    23K20256
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
  • 批准号:
    24K17272
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了