CAREER: Harnessing viscous streaming in complex active systems: mini-bots in fluids
职业:利用复杂主动系统中的粘性流:流体中的迷你机器人
基本信息
- 批准号:1846752
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial and bio-hybrid (partly synthetic, partly biological) miniaturized swimming robots to navigate through the blood stream and deliver drugs have great potential in biomedicine. Viscous streaming is a phenomenon where an oscillating body generates stable, predictable and robust fluid flows that can be used to manipulate the body's local surroundings. Viscous streaming is being proposed for transport, mixing, and particle assembly, and it may be suitable for transport of mini-bots intended for applications in biomedicine. One limitation is that while streaming phenomena are well understood for simple bodies, little is known in the case of complex geometries. This proposal combines modeling and experiments to tackle the knowledge gap that relates viscous streaming to body shape. This knowledge will connect biology and robotics to enhance current capabilities of mini-bots and enables new ones. This research will pave the way to transformative applications such as localized drug delivery, precision manipulation, and fabrication. This is in line with the national need to increase medicine effectiveness as well as competitiveness in manufacturing via advanced computational methods. The proposed research has broad educational impact at the cross-section of fluid mechanics, simulations, robotics, and bioengineering. A set of outreach activities and intuitive learning modules will be designed to spark interest in fluid mechanics and engineering. A broad and diverse group of graduate and undergraduate students from different disciplines will be engaged. This proposed research delineates a roadmap to understand streaming beyond classic cases. The role of curvature, an aspect largely neglected, is dissected from a mathematical, dynamical and physical perspective via a conceptual framework that combines simulations, method of successive approximations, bifurcation and flow topology analysis, experiments. Then, (1) simple 2D and 3D shapes will be considered to investigate the effect of symmetry breaking, corners and variable curvature with respect to classical solutions; (2) most representative cases will be experimentally verified; (3) insights will be exploited in untethered synthetic and bio-hybrid mini-bots targeting biomedical applications. The outcome is a set of design principles captured by scaling relations, phase diagrams, and proof-of-concept demonstrations. This is complemented by methods, algorithms, software and data made publicly available to lower barrier entries, thus broadening the scope of this technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工和生物混合(部分合成,部分生物)微型游泳机器人在血液中导航并提供药物在生物医学中具有巨大的潜力。粘性流是一种振荡体产生稳定、可预测和鲁棒的流体流动的现象,其可用于操纵身体的局部环境。粘性流被提议用于运输、混合和颗粒组装,并且它可能适合于用于生物医学应用的小型机器人的运输。一个局限性是,虽然流现象是很好地了解简单的机构,在复杂的几何形状的情况下知之甚少。该建议结合了建模和实验,以解决与粘性流的身体形状的知识差距。这些知识将连接生物学和机器人技术,以增强微型机器人的现有能力,并实现新的能力。这项研究将为变革性应用铺平道路,如局部药物输送,精确操作和制造。这符合国家通过先进的计算方法提高药物有效性和制造业竞争力的需求。拟议的研究在流体力学,模拟,机器人和生物工程的横截面具有广泛的教育影响。将设计一套推广活动和直观的学习模块,以激发对流体力学和工程的兴趣。来自不同学科的研究生和本科生的广泛和多样化的群体将参与。这项拟议的研究描绘了一个路线图,以了解流超越经典的情况。曲率的作用,很大程度上被忽视的一个方面,解剖从数学,动力学和物理的角度通过一个概念框架,结合模拟,逐次逼近,分叉和流动拓扑分析,实验的方法。然后,(1)将考虑简单的2D和3D形状,以研究对称性破缺、拐角和可变曲率对经典解决方案的影响;(2)将对大多数代表性案例进行实验验证;(3)将在针对生物医学应用的无约束合成和生物混合微型机器人中利用见解。结果是一组设计原则,通过缩放关系,相图和概念验证演示来捕获。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Streaming-enhanced flow-mediated transport
流媒体增强的流介导传输
- DOI:10.1017/jfm.2019.643
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Parthasarathy, Tejaswin;Chan, Fan Kiat;Gazzola, Mattia
- 通讯作者:Gazzola, Mattia
Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics
- DOI:10.1126/scirobotics.add1053
- 发表时间:2023-01-25
- 期刊:
- 影响因子:25
- 作者:Kim, Yongdeok;Yang, Yiyuan;Bashir, Rashid
- 通讯作者:Bashir, Rashid
Neuromuscular actuation of biohybrid motile bots
- DOI:10.1073/pnas.1907051116
- 发表时间:2019-10-01
- 期刊:
- 影响因子:11.1
- 作者:Aydin, Onur;Zhang, Xiaotian;Saif, M. Taher A.
- 通讯作者:Saif, M. Taher A.
Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines
- DOI:10.1002/aisy.202000237
- 发表时间:2021-05-01
- 期刊:
- 影响因子:7.4
- 作者:Wang, Jiaojiao;Zhang, Xiaotian;Gazzola, Mattia
- 通讯作者:Gazzola, Mattia
An unrecognized inertial force induced by flow curvature in microfluidics
- DOI:10.1073/pnas.2103822118
- 发表时间:2021-07-20
- 期刊:
- 影响因子:11.1
- 作者:Agarwal, Siddhansh;Chan, Fan Kiat;Hilgenfeldt, Sascha
- 通讯作者:Hilgenfeldt, Sascha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mattia Gazzola其他文献
Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations
流体中自推进、柔软且细长的结构:沉浸在不可压缩纳维 - 斯托克斯方程的速度 - 涡量公式中的科塞尔拉特杆
- DOI:
10.1016/j.cma.2025.117910 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:7.300
- 作者:
Arman Tekinalp;Yashraj Bhosale;Songyuan Cui;Fan Kiat Chan;Mattia Gazzola - 通讯作者:
Mattia Gazzola
Mattia Gazzola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mattia Gazzola', 18)}}的其他基金
Elements: Elastica - A software ecosystem for modeling, simulation, design, and control of soft, compliant, and heterogenous structures interacting with their environment
元素:Elastica - 一个软件生态系统,用于对与其环境交互的软性、合规性和异构结构进行建模、仿真、设计和控制
- 批准号:
2209322 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Expeditions: Mind in Vitro — Computing with Living Neurons
探险:体外思维 — 用活神经元进行计算
- 批准号:
2123781 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Emergent Mechanics of Randomly Packed Elastic Filaments
合作研究:随机填充弹性丝的新兴力学
- 批准号:
1825440 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EFRI C3 SoRo: An integrated approach towards computational design, fabrication and understanding of bio-hybrid soft architectures capable of adaptive behavior
EFRI C3 SoRo:一种用于计算设计、制造和理解具有自适应行为的生物混合软架构的集成方法
- 批准号:
1830881 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
- 批准号:
2339634 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Harnessing creative heritage for migrant wellbeing in museums and libraries
利用博物馆和图书馆的创意遗产促进移民福祉
- 批准号:
DE240100336 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
- 批准号:
DE240100080 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Harnessing the Power of Diels-Alderases in Sustainable Chemoenzymatic Synthesis
利用 Diels-Alderases 进行可持续化学酶合成
- 批准号:
BB/Y000846/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Harnessing mega-constellations to probe space weather globally
利用巨型星座探测全球空间天气
- 批准号:
MR/X034704/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fellowship
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Harnessing the potential of Archaea - Training Europe's next visionaries for an innovative and sustainable future
利用古生菌的潜力 - 培训欧洲的下一代有远见的人以实现创新和可持续的未来
- 批准号:
EP/Y031407/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Harnessing a novel nematode protein for safe and specific RNA delivery to cells
利用新型线虫蛋白将 RNA 安全且特异性地递送至细胞
- 批准号:
EP/Y037251/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Harnessing Magnonic Nonreciprocity Through Dissipation Engineering
通过耗散工程利用磁非互易性
- 批准号:
2337713 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant