Harnessing Magnonic Nonreciprocity Through Dissipation Engineering

通过耗散工程利用磁非互易性

基本信息

  • 批准号:
    2337713
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Energy dissipation resulting from the interaction of a system with its environment has been traditionally viewed solely as a foe that limits signal lifetimes. However, the advent of new theories has reshaped our perspective on it and enabled novel engineering approaches to utilize dissipation as an important resource for manipulating the behaviors of a given system. Despite its rapid advancements in photonic and electronic circuits, dissipation engineering remains primarily a theoretical pursuit in magnonic and hybrid magnonic systems where information is carried by magnons – the elementary collective spin excitations. In particular, the experimental exploration of unique dissipation phenomena intertwined with nonreciprocity, such as robust mode conversion and the non-Hermitian skin effect, is still in its infancy, lacking well-designed experiments and a clear path toward practical applications. This project will investigate the basic principles of dissipations in magnonic systems and engineering approaches for manipulating dissipations. These endeavors will greatly enhance the fundamental comprehension of how dissipation functions within magnonic systems, leading to advancements in practical applications such as nonreciprocal information processing. The project will provide extensive mentoring and training opportunities for undergraduate and graduate students, and moreover, a new course curriculum will be introduced for undergraduate students, creating new opportunities for underrepresented high school student groups and K-12 students to immerse themselves in science and participate in research.This project aims to harness nonreciprocity by leveraging dissipation engineering in hybrid magnonic systems. Through theory-guided experimental efforts, strongly coupled microwave photon-magnon systems will be explored in three parallel thrusts: Thrust 1 will focus on the proof-of-principle demonstration of mode conversion between two magnon modes in hybrid magnonic systems, which is protected by the topology of the system and thus highly robust. This will be achieved in the time domain using pulsed operations. Thrust 2 will investigate the topological mode conversion between a magnon and a microwave photon mode, which will be implemented in the space domain under continuous wave operation. Thrust 3 will demonstrate the emergence of the skin effect in a hybrid magnonic system that is enabled by dissipative coupling. This research will provide insights for a series of fundamental questions related to the dissipation of magnetic systems, the dynamics of encircling singularity points, the relation between the non-Hermitian skin effect and nonreciprocal transport, and the role of the nonlinearities that are naturally built in the magnetization dynamics. The research outcome will pave the way for leveraging the unique non-Hermitian properties of hybrid magnonics across various applications, ranging from neuromorphic computing to magnon-based logic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,由系统与其环境的相互作用引起的能量耗散仅被视为限制信号寿命的敌人。然而,新理论的出现重塑了我们对它的看法,并使新的工程方法能够利用耗散作为操纵给定系统行为的重要资源。尽管耗散工程在光子和电子电路中取得了快速的进步,但它仍然主要是磁振子和混合磁振子系统中的理论追求,其中信息由磁振子-基本的集体自旋激发携带。特别是,与非互易性交织在一起的独特耗散现象的实验探索,如鲁棒模式转换和非厄米趋肤效应,仍处于起步阶段,缺乏精心设计的实验和走向实际应用的明确途径。本计画将探讨磁振子系统中耗散的基本原理,以及操控耗散的工程方法。这些努力将极大地增强对磁振子系统中耗散函数的基本理解,从而在实际应用中取得进展,如非互易信息处理。该项目将为本科生和研究生提供广泛的指导和培训机会,此外,还将为本科生引入新的课程设置,为代表性不足的高中学生群体和K-12学生创造新的机会,让他们沉浸在科学中并参与研究。该项目旨在通过利用混合磁振子系统中的耗散工程来利用非互惠性。通过理论指导的实验工作,将在三个平行的推力中探索强耦合的微波光子-磁振子系统:推力1将侧重于混合磁振子系统中两种磁振子模式之间的模式转换的原理证明,这受到系统拓扑结构的保护,因此具有高度鲁棒性。这将在时域中使用脉冲操作来实现。推力2将研究磁振子和微波光子模式之间的拓扑模式转换,这将在连续波操作下在空间域中实现。推力3将证明出现在一个混合磁振子系统,使耗散耦合的集肤效应。这项研究将为一系列基本问题提供见解,这些问题涉及磁系统的耗散、环绕奇点的动力学、非厄米集肤效应与非互易输运之间的关系,以及自然建立在磁化动力学中的非线性的作用。该研究成果将为在从神经形态计算到基于磁振子的逻辑系统等各种应用中利用混合磁振子独特的非埃尔米特性质铺平道路。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xufeng Zhang其他文献

Extended social force model-based mean shift for pedestrian tracking under obstacle avoidance
基于扩展社会力模型的避障行人跟踪均值平移
  • DOI:
    10.1049/iet-cvi.2016.0022
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Xuguang Zhang;Xufeng Zhang;Yiming Wang;Hui Yu
  • 通讯作者:
    Hui Yu
Increase in IgG-binding Capacity of Recombinant Protein a Immobilized on Heterofunctional Amino and Epoxy Agarose
固定在异功能氨基和环氧琼脂糖上的重组蛋白 a 的 IgG 结合能力增加
Electron charge qubit with 0.1 millisecond coherence time
相干时间为 0.1 毫秒的电子电荷量子位
  • DOI:
    10.1038/s41567-023-02247-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Xianjing Zhou;Xinhao Li;Qianfan Chen;G. Koolstra;Ge Yang;Brennan Dizdar;Yizhong Huang;Christopher S. Wang;Xu Han;Xufeng Zhang;David I. Schuster;Dafei Jin
  • 通讯作者:
    Dafei Jin
Dynamical phase-field model of cavity electromagnonic systems
空腔电磁系统动态相场模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Zhuang;Yujie Zhu;Changchun Zhong;Liang Jiang;Xufeng Zhang;Jia
  • 通讯作者:
    Jia
Cytokine-induced killer cells: A prospective vector for effective smuggling of oncolytic virus to tumor cells
细胞因子诱导的杀伤细胞:将溶瘤病毒有效走私至肿瘤细胞的前瞻性载体
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xufeng Zhang;W. Bo;Y. Lv
  • 通讯作者:
    Y. Lv

Xufeng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
  • 批准号:
    EP/Y003276/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
  • 批准号:
    2339475
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Creation of a new-principle inductor "magnonic inductor" by magnetic excitation of magnetic insulators
通过磁绝缘体磁激励创建新原理电感器“磁振子电感器”
  • 批准号:
    23K17882
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
  • 批准号:
    2328787
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Spin-Wave Dynamics in Yytrium Iron Garnet / Nanomagnet Hybrid Devices for Magnonic Computing
用于磁计算的钇铁石榴石/纳米磁体混合器件中的自旋波动力学
  • 批准号:
    22KF0283
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the hybrid quantum magnonic system for next-generation quantum information processing
研究下一代量子信息处理的混合量子磁力系统
  • 批准号:
    23KF0139
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MANNGA: MAGNONIC ARTIFICIAL NEURAL NETWORKS AND GATE ARRAYS
Mannga:磁力人工神经网络和门阵列
  • 批准号:
    10039217
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
Quantum theory on the magnonic Wiedemann-Franz law
波波子维德曼-弗朗茨定律的量子理论
  • 批准号:
    22K03519
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERI: Hybrid magnonic optics for data processing applications
ERI:用于数据处理应用的混合磁振光学
  • 批准号:
    2138236
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了