CAREER: Deconstructing Neurovascular Mechanobiology

职业:解构神经血管力学生物学

基本信息

  • 批准号:
    1846860
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Relative to blood vessels in the rest of the body, the blood vessels in the brain have specialized functions that make them very selective with respect to what substances they permit to transfer between the bloodstream and the brain. This function is commonly referred to as the blood-brain barrier (BBB) and may become compromised in various brain diseases, but the reason for this change is often unclear. The goal of this Faculty Early Career Development Program (CAREER) award is to investigate the hypothesis that changes in the stiffness of the extracellular matrix of blood vessels are one of the causes of dysfunction of the blood-brain barrier. This research will be accomplished by conducting measurements directly on blood vessels dissected from mouse and human brain tissue as well as by building blood vessel models from human stem cells through which the matrix stiffness and other parameters can be precisely controlled. These results will provide key insight into fundamental processes related to the progression of changes in brain vascular physiology due to aging or disease. In conjunction with this research plan, new educational and outreach activities will be developed and disseminated. In collaboration with a local artist and high school students who will perform research in the PI?s lab, a series of educational materials will be developed to explain how stem cells can be used for understanding and treating diseases. These materials will be disseminated at a Nashville science outreach center, through after-school clubs for economically disadvantaged students, and a yearly neuroscience event, thus promoting learning and engagement in the local community. The overall research goal of this award is to understand the mechanobiology of the blood-brain barrier, specifically related to the interaction of the cerebrovascular mechanics with BBB function. This will be accomplished through two primary research objectives. The first objective is to fundamentally characterize how neurovascular tissue stiffness influences blood-brain barrier function in situ (in natural tissue) and in vitro (in engineered tissue). The in situ portion of the project will characterize the neurovascular stiffness, blood-brain barrier leakage, and extracellular matrix remodeling as a function of age and disease using mouse and human brain tissue samples. The in vitro portion of the work will develop blood-brain barrier mimics using induced pluripotent stem cells that can model this structure. These mimics will then be used to directly examine the effect of substrate stiffness on blood-brain barrier function. The second objective is to elucidate the biophysical mechanisms, specifically the mechanical triggers and the molecular signals, that regulate neurovascular stiffening in 2D and 3D culture. The focus will be on both autonomous and cross-talk signaling for the various cells that make up the blood-brain barrier. Understanding more fully the blood-brain barrier -- and in particular how changes in vascular stiffness that occur during aging and other pathologies may impact its function -- is a key area for understanding cerebrovascular physiology and how materials can be transported (or prevented from being transported) to the brain tissue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
相对于身体其他部位的血管,大脑中的血管具有特殊的功能,这使得它们在允许在血液和大脑之间转移什么物质方面具有非常高的选择性。这一功能通常被称为血脑屏障(BBB),在各种脑部疾病中可能会受到损害,但这种变化的原因往往不清楚。该学院早期职业发展计划(Career)奖项的目标是调查一种假设,即血管细胞外基质硬度的变化是血脑屏障功能障碍的原因之一。这项研究将通过直接对从老鼠和人脑组织中解剖的血管进行测量,以及通过从人类干细胞建立血管模型来完成,通过该模型可以精确控制基质硬度和其他参数。这些结果将提供与衰老或疾病引起的脑血管生理学变化进展相关的基本过程的关键洞察力。结合这项研究计划,将开发和传播新的教育和宣传活动。与当地一位艺术家和高中生合作,他们将在皮?S实验室进行研究,将开发一系列教育材料,解释干细胞如何用于理解和治疗疾病。这些材料将在纳什维尔科学推广中心、经济困难学生课外俱乐部和一年一度的神经科学活动中传播,从而促进当地社区的学习和参与。该奖项的总体研究目标是了解血脑屏障的机械生物学,具体涉及脑血管力学与血脑屏障功能的相互作用。这将通过两个主要研究目标来实现。第一个目标是从根本上表征神经血管组织硬度如何影响血脑屏障功能,在原位(在自然组织中)和体外(在工程组织中)。该项目的原位部分将使用小鼠和人脑组织样本来表征神经血管僵硬、血脑屏障渗漏和细胞外基质重构作为年龄和疾病的函数。这项工作的体外部分将使用可以模拟这种结构的诱导多能干细胞来开发血脑屏障的模拟物。然后,这些模拟物将被用来直接检测基质硬度对血脑屏障功能的影响。第二个目标是阐明在2D和3D培养中调节神经血管僵硬的生物物理机制,特别是机械触发和分子信号。重点将放在组成血脑屏障的各种细胞的自主和串扰信号上。更全面地了解血脑屏障--尤其是在衰老和其他病理过程中发生的血管僵硬变化如何影响其功能--是了解脑血管生理学以及如何将材料运输(或防止)到脑组织的关键领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of basal media composition on barrier fidelity within human pluripotent stem cell-derived blood-brain barrier models.
  • DOI:
    10.1111/jnc.15532
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Neal EH;Katdare KA;Shi Y;Marinelli NA;Hagerla KA;Lippmann ES
  • 通讯作者:
    Lippmann ES
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ethan Lippmann其他文献

Ethan Lippmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ethan Lippmann', 18)}}的其他基金

I-Corps: Peripheral Artery Disease Treatment and Arteriogenic Hydrogels
I-Corps:外周动脉疾病治疗和动脉水凝胶
  • 批准号:
    2230331
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A high throughput platform for the selective generation of neurons from stem cells
用于从干细胞选择性生成神经元的高通量平台
  • 批准号:
    1706155
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
  • 批准号:
    NE/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the brain circuits of reward-seeking
解构寻求奖励的大脑回路
  • 批准号:
    DE230100401
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Deconstructing the Checkpoints of Necroptosis
解构坏死性凋亡的检查点
  • 批准号:
    BB/X007383/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
  • 批准号:
    10656870
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing brainstem circuits for visceral senses
解构内脏感觉的脑干回路
  • 批准号:
    10591627
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing the diet-induced remodeling of adipose tissue
解构饮食诱导的脂肪组织重塑
  • 批准号:
    10567053
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing human body plan development with stem cells
用干细胞解构人体计划制定
  • 批准号:
    10644147
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing epileptic circuits in a mouse model of SLC6A1 syndrome
解构 SLC6A1 综合征小鼠模型中的癫痫回路
  • 批准号:
    10508480
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing the fibrotic microenvironment in Crohn's disease to promote tissue healing
解构克罗恩病的纤维化微环境,促进组织愈合
  • 批准号:
    MR/X008789/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing and Rewiring RNA-RBP regulatory networks
解构和重新连接 RNA-RBP 调控网络
  • 批准号:
    EP/X029972/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了