CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
基本信息
- 批准号:1847144
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dynamical systems have long been studied both within mathematics and as models in many other disciplines, such as weather forecasting, geophysical modeling, molecular biology, financial mathematics, and ecology. The mathematical description of these systems has revealed a remarkable variety of possible behavior, and it is known that in applied settings the complex behavior of these systems can significantly impact modeling outcomes. The educational focus of this project involves training and educating students from middle school to graduate school in probability, statistics, and dynamics. In particular, the PI will develop engaging educational activities in probability and statistics and deliver them to middle and high school students in UNC Charlotte's Pre-College Program. These activities will be disseminated widely, and teachers will receive training in their delivery. Additionally, the PI will establish a summer research program in probability for undergraduate students, and graduate students will be involved in all aspects of the project.This project focuses on the analysis of dynamical systems from both probabilistic and statistical points of view. From the probabilistic point of view, the project seeks to address the ``forward problem," in which a dynamical system is chosen at random from a collection of systems and one would like to characterize its behavior. This line of research will shed light on what type of behavior one can expect to see in a typical system. From the statistical perspective, the project focuses on the ``inverse problem," in which one would like to learn or draw inferences from observations of a (possibly unknown) dynamical system. More specifically, the project involves analyzing the performance of statistical inference methods when applied to observations of a dynamical system or group action. Results in this direction will provide theoretical guidance on when statistical procedures may be successfully applied in the context of dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统长期以来一直在数学和许多其他学科中作为模型进行研究,如天气预报、地球物理建模、分子生物学、金融数学和生态学。这些系统的数学描述揭示了各种可能的行为,并且众所周知,在应用设置中,这些系统的复杂行为可以显着影响建模结果。这个项目的教育重点包括对从中学到研究生的学生进行概率论、统计学和动力学方面的培训和教育。特别是,PI将开发引人入胜的概率和统计教育活动,并将其提供给北卡罗来纳大学夏洛特分校大学预科课程的初高中学生。这些活动将广泛传播,教师将接受培训。此外,PI将为本科生建立一个概率论的夏季研究项目,研究生将参与该项目的各个方面。该项目侧重于从概率和统计的角度分析动力系统。从概率的角度来看,该项目试图解决“前向问题”,即从系统集合中随机选择一个动力系统,并希望表征其行为。这一系列的研究将阐明在一个典型的系统中,人们可以期望看到什么样的行为。从统计学的角度来看,该项目侧重于“逆问题”,在这个问题中,人们希望从对(可能未知的)动力系统的观察中学习或得出推论。更具体地说,该项目涉及分析统计推理方法在应用于动态系统或群体行为观察时的性能。这个方向的结果将为统计程序何时可以成功地应用于动力系统提供理论指导。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical risk minimization and complexity of dynamical models
- DOI:10.1214/19-aos1876
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:K. Mcgoff;A. Nobel
- 通讯作者:K. Mcgoff;A. Nobel
Entropy conjugacy for Markov multi-maps of the interval
区间马尔可夫多重映射的熵共轭
- DOI:10.3934/dcds.2020353
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:P. Kelly, James;McGoff, Kevin
- 通讯作者:McGoff, Kevin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin McGoff其他文献
Orders of accumulation of entropy on manifolds
- DOI:
10.1007/s11854-011-0015-x - 发表时间:
2011-09-21 - 期刊:
- 影响因子:0.900
- 作者:
Kevin McGoff - 通讯作者:
Kevin McGoff
Factor maps and embeddings for random ℤd shifts of finite type
- DOI:
10.1007/s11856-018-1822-x - 发表时间:
2019-04-17 - 期刊:
- 影响因子:0.800
- 作者:
Kevin McGoff;Ronnie Pavlov - 通讯作者:
Ronnie Pavlov
Coalescence and Meeting Times on $$n$$ -Block Markov Chains
- DOI:
10.1007/s10959-014-0579-3 - 发表时间:
2014-10-26 - 期刊:
- 影响因子:0.600
- 作者:
Kathleen Lan;Kevin McGoff - 通讯作者:
Kevin McGoff
Kevin McGoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin McGoff', 18)}}的其他基金
Random Dynamical Systems and Limit Theorems for Optimal Tracking
随机动力系统和最优跟踪的极限定理
- 批准号:
1613261 - 财政年份:2016
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Continuing Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




