CAREER: Robust Decoding of Neural Command for Real Time Human Machine Interactions
职业:实时人机交互的神经命令的鲁棒解码
基本信息
- 批准号:1847319
- 负责人:
- 金额:$ 54.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human hand can produce complex dexterous movements, unmatched by any current robotic hand. Such sophisticated movements are often taken for granted. A majority of individuals with a stroke, however, tend to have persistent hand functional deficits, limiting their ability of living independently. Human-machine interactions hold great potential to restore motor functions of stroke survivors. Recently advanced rehabilitative or assistive techniques (e.g., hand exoskeletons) have the ability to substantially enhance motor functions. However, few of these state-of-the-art techniques have been successfully translated to end users, and one critical limiting factor is the challenge in controlling the many movement directions robustly. Therefore, there is an urgent need to develop non-invasive and robust neural decoding approaches for human-machine interactions that can directly translate to clinical applications. Accordingly, this project aims to decode the neural command sent from the brain that controls individual finger movements. This is accomplished by reading activities in the spinal cord using muscle electrical signals obtained from the skin surface. The decoded finger-specific neural command can then be used to control rehabilitation or assistive robots, which can substantially enhance the quality of human-machine interactions. This approach can also facilitate wide applications of robotic rehabilitation or assistance in stroke survivors. The non-invasive nature of the techniques has a great potential for readily clinical translations. The proposed research will be integrated with education through graduate and undergraduate research involvement and new course development. Summer projects and demonstration materials on human-machine interactions will be developed for K-12 students. Outreach programs will be organized to expose the proposed research topics to underrepresented students, highlight the opportunities in science and engineering, and promote students interests in choosing future STEM careers.The principal investigator's long-term research goal is to develop highly innovative non-invasive tools for human-machine interactions, with a particular interest in better understanding the neuromechanical properties of the upper extremity, and improve the functional performance in individuals with a central or peripheral injury. Toward this goal, this project aims to decode the descending neural command that controls individual finger movements by extracting spinal motoneuron discharge activities using source separation of high-density electromyogram signals (HD-EMG) from finger muscles. The non-invasive, robust, and real-time neural decoding technique developed will be easy to implement, can accommodate the different impairment levels of individual stroke survivors, and will substantially improve the control quality of exoskeleton or neuroprosthesis. The Research Plan is organized under three aims. The FIRST AIM is to develop non-invasive offline and real-time neural decoding approaches based on spinal motoneuron discharge probabilities at the population level that are directed at a designated finger. This aim addresses the need for non-invasive human-machine interface signals that allow robust and intuitive interaction between humans and machines. Surface EMG signals will be recorded over the targeted extrinsic muscles using an 8x16 channel electrode array with an inter-electrodedistance of 10 mm. Motoneuron discharge activities will be obtained from different independent component analysis (ICA)-based HD EMG decomposition methods that will be evaluated on both simulated and experimental EMG data obtained from stroke survivors and healthy control subjects. The decoding accuracy will be evaluated by comparing the decoded neural drive with finger force output and joint angles. Given that binary motoneuron discharge events are used, the decoded neural drive signals are expected to be robust to changes in action potential properties in the EMG signals, background noise, and motion artifacts. The evaluation of the performance and boundary conditions of different source separation algorithms can further ensure robust decoding performance in a variety of situations, especially in clinical populations. The SECOND AIM is to classify the neural command specific to individual finger movements. This aim addresses the need for effective control of individual/flexible finger movement in developing human-machine interactions. Surface EMG signals will be recorded over the extrinsic forearm muscles using an 8x16 channel HD EMG electrode array and over the intrinsic extensors muscles to fingers using an 8x4 channel grid. Different features from HD EMG activities and from motor unit (MU) distributions will be extracted. With macro and micro level features, different muscle activation regions will be identified for individual fingers using pattern classification approaches. The neural drive associated with specific finger movement will then be calculated based on MU discharge activities of a specific finger. The classified neural command signals can enable robust and flexible control of individual finger movements non-invasively, and dramatically enhance the dexterity of hand function in clinical populations. The THIRD AIM is to quantify the performance of the decoding technique by controlling a non-invasive neuroprosthesis for dexterous finger grasp patterns. A transcutaneous nerve stimulation technique developed in the PI's group will be used to elicit flexible individual and coordinated finger movements. The neural stimulation system targeting the affected hand of stroke survivors will be controlled by the decoded neural drive from the contralateral/unaffected arm (particularly if the stroke is severe) or from the affected arm, with time-sharing between stimulations and recordings. The force output (force absolute error and force variability) of neural drive controlled stimulation will be compared with the global EMG controlled stimulation to evaluate the performance of the neural decoding technique. The overall outcomes of the project are expected to ultimately allow stroke survivors to intuitively interact with rehabilitative/assistive devices in a robust and non-invasive manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multichannel Nerve Stimulation for Diverse Activation of Finger Flexors
多通道神经刺激可多样化激活手指屈肌
- DOI:10.1109/tnsre.2019.2947785
- 发表时间:2019
- 期刊:
- 影响因子:4.9
- 作者:Shin, Henry;Hu, Xiaogang
- 通讯作者:Hu, Xiaogang
Real-time finger force prediction via parallel convolutional neural networks: a preliminary study
通过并行卷积神经网络进行实时手指力预测:初步研究
- DOI:10.1109/embc44109.2020.9175390
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Xu, Feng;Zheng, Yang;Hu, Xiaogang
- 通讯作者:Hu, Xiaogang
Concurrent Estimation of Finger Flexion and Extension Forces Using Motoneuron Discharge Information
- DOI:10.1109/tbme.2021.3056930
- 发表时间:2021-02
- 期刊:
- 影响因子:4.6
- 作者:Yang Zheng;Xiaogang Hu
- 通讯作者:Yang Zheng;Xiaogang Hu
Assessment of Impaired Finger Independence of Stroke Survivors: A Preliminary study
中风幸存者手指独立性受损的评估:初步研究
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fan Jiahao, Shin Henry
- 通讯作者:Fan Jiahao, Shin Henry
Adaptive Real-Time Decomposition of Electromyogram During Sustained Muscle Activation: A Simulation Study
持续肌肉激活过程中肌电图的自适应实时分解:模拟研究
- DOI:10.1109/tbme.2021.3102947
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Zheng, Yang;Hu, Xiaogang
- 通讯作者:Hu, Xiaogang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaogang Hu其他文献
CLINICAL TRIAL OF LIVE MEASLES VACCINE GIVEN ALONE AND LIVE VACCINE PRECEDED BY KILLED VACCINE Fourth report to the Medical Research Council by the Measles Sub-Committee of the Committee on Development of Vaccines and Immunisation Procedures
单独接种麻疹活疫苗和先接种灭活疫苗的活疫苗的临床试验 疫苗和免疫程序开发委员会麻疹小组委员会向医学研究理事会提交的第四次报告
- DOI:
10.1016/s0140-6736(77)91426-x - 发表时间:
1977 - 期刊:
- 影响因子:0
- 作者:
Xiaogang Hu;Runfang Kang;Ling Chen;Xiaopeng Hu - 通讯作者:
Xiaopeng Hu
Time gain influences adaptive visual-motor isometric force control
时间增益影响自适应视觉运动等长力控制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2
- 作者:
Xiaogang Hu;Molly M. Mazich;K. Newell - 通讯作者:
K. Newell
Power spectral analysis of surface EMG in stroke: A preliminary study
中风表面肌电图的功率谱分析:初步研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Srivatsan;Xiaogang Hu;Brian Jeon;Aneesha K. Suresh;W. Rymer;N. Suresh - 通讯作者:
N. Suresh
Preparation and Characterization of Prometryn Molecularly Imprinted Solid‐Phase Microextraction Fibers
扑草净分子印迹固相微萃取纤维的制备及表征
- DOI:
10.1080/00032710600966127 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Xiaogang Hu;Yuling Hu;Gongke Li - 通讯作者:
Gongke Li
Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency Subthreshold Nerve Stimulation
千赫兹频率阈下神经刺激引起的中风后肌肉疲劳
- DOI:
10.3389/fneur.2018.01061 - 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
Yang Zheng;Henry Shin;Xiaogang Hu - 通讯作者:
Xiaogang Hu
Xiaogang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaogang Hu', 18)}}的其他基金
NSF-FR: Bidirectional Neural-Machine Interface for Closed-Loop Control of Prostheses
NSF-FR:用于假肢闭环控制的双向神经机器接口
- 批准号:
2319139 - 财政年份:2023
- 资助金额:
$ 54.95万 - 项目类别:
Continuing Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
$ 54.95万 - 项目类别:
Standard Grant
HCC: Medium: A novel neural interface for user-driven control of rehabilitation of finger individuation
HCC:中:一种新颖的神经接口,用于用户驱动的手指个性化康复控制
- 批准号:
2330862 - 财政年份:2022
- 资助金额:
$ 54.95万 - 项目类别:
Standard Grant
CAREER: Robust Decoding of Neural Command for Real Time Human Machine Interactions
职业:实时人机交互的神经命令的鲁棒解码
- 批准号:
2246162 - 财政年份:2022
- 资助金额:
$ 54.95万 - 项目类别:
Continuing Grant
HCC: Medium: A novel neural interface for user-driven control of rehabilitation of finger individuation
HCC:中:一种新颖的神经接口,用于用户驱动的手指个性化康复控制
- 批准号:
2106747 - 财政年份:2021
- 资助金额:
$ 54.95万 - 项目类别:
Standard Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2123678 - 财政年份:2021
- 资助金额:
$ 54.95万 - 项目类别:
Standard Grant
NRI: Towards Restoring Natural Sensation of Hand Amputees via Wearable Surface Grid Electrodes
NRI:通过可穿戴表面网格电极恢复截肢者的自然感觉
- 批准号:
1637892 - 财政年份:2016
- 资助金额:
$ 54.95万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Robust Decoding of Neural Command for Real Time Human Machine Interactions
职业:实时人机交互的神经命令的鲁棒解码
- 批准号:
2246162 - 财政年份:2022
- 资助金额:
$ 54.95万 - 项目类别:
Continuing Grant
BrainGate: Robust Neural Decoding for Veterans with ALS
BrainGate:为患有 ALS 的退伍军人提供强大的神经解码
- 批准号:
10310408 - 财政年份:2017
- 资助金额:
$ 54.95万 - 项目类别:
BrainGate: Robust Neural Decoding for Veterans with ALS
BrainGate:为患有 ALS 的退伍军人提供强大的神经解码
- 批准号:
10775689 - 财政年份:2017
- 资助金额:
$ 54.95万 - 项目类别:
BrainGate: Robust Neural Decoding for Veterans with ALS
BrainGate:为患有 ALS 的退伍军人提供强大的神经解码
- 批准号:
10454897 - 财政年份:2017
- 资助金额:
$ 54.95万 - 项目类别:
BrainGate: Robust Neural Decoding for Veterans with ALS
BrainGate:为患有 ALS 的退伍军人提供强大的神经解码
- 批准号:
9740952 - 财政年份:2017
- 资助金额:
$ 54.95万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
8825743 - 财政年份:2014
- 资助金额:
$ 54.95万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
9265894 - 财政年份:2014
- 资助金额:
$ 54.95万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
8894532 - 财政年份:2014
- 资助金额:
$ 54.95万 - 项目类别:
Oversampled filter banks and iterative decoding methods for robust data transmission
过采样滤波器组和迭代解码方法可实现稳健的数据传输
- 批准号:
249699-2002 - 财政年份:2005
- 资助金额:
$ 54.95万 - 项目类别:
Discovery Grants Program - Individual
Oversampled filter banks and iterative decoding methods for robust data transmission
过采样滤波器组和迭代解码方法可实现稳健的数据传输
- 批准号:
249699-2002 - 财政年份:2004
- 资助金额:
$ 54.95万 - 项目类别:
Discovery Grants Program - Individual