CAREER: Scalable Nano-integrated 3D Fibers for Multifunctional Neural Interfacing

职业:用于多功能神经接口的可扩展纳米集成 3D 纤维

基本信息

项目摘要

Nearly one-sixth of the world's population suffer from neurological diseases, including epilepsy, Parkinson's disease, autism, Alzheimer's disease, depression, etc., and their life qualities are severely compromised. In order to effectively treat these brain-related diseases with minimal side effects, we need to fully understand the functional networks in the brain. However, this endeavor has been largely hindered by the engineering challenges of making deep brain interface devices that match the functional complexity and mechanical compliance of the brain. There remains an urgent need to create a multifunctional device that can seamlessly interface with the brain without causing significant damage. This research program proposes to develop novel neural interface devices which are highly flexible, biocompatible, scalable, and clinically translatable, with multisite multifunctional capabilities. The developed toolset will also be utilized to address some of the key challenges in biological applications, with a focus on the seizure, tumor, and the visual system. To achieve these goals, the proposed research program will build upon the leading edge research across multiple fields, including nanomaterials, optics, electronics, surface chemistry, microfabrication, and neuroscience, and aims to significantly advance the fundamental understanding in these fields. The proposed research offers many potential benefits to society, including the possibility of improving the lives of patients with neurological disorders. The research will be highly integrated with multilevel educational components towards K12 students and teachers, undergraduate, and graduate students, with a focus on underrepresented student groups. Examples include the Kindergarten-to-College program targeting fifth graders from more than ten title I schools across Virginia, and the Computers and Technology at Virginia Tech program targeting high school girls from Virginia and out of state. The PI will also actively participate in the National Science Foundation's Revolutionizing Engineering Departments grant for transforming undergraduate education in the Electrical and Computer Engineering department at Virginia Tech. The objective of the proposed research program is to address a key challenge in developing bio-friendly and multifunctional neural interfaces utilizing a non-conventional fiber drawing and patterning platform. The methods to be employed include nanomaterials processing and modeling, multimaterial multifunctional fiber fabrication and patterning, electrochemical characterization and circuit modeling, optical characterization and modeling, and in vitro and in vivo neural stimulation and recording. This project will enable flexible and biocompatible, nanoelectrodes-integrated, bidirectional, and multisite three-dimensional neural interfaces. It can facilitate the understanding of complex brain functions as well as the treatment of neurological diseases. The specific goals of this program are (1) Scalable fabrication of nano-integrated electrodes. Fundamental understanding of the material properties and charge transfer will be obtained through thorough characterization as well as mechanical and electrical modeling. (2) Multifunctional integration combined with modeling to understand the material and structural limitations. (3) In vitro and in vivo neural stimulation and recording for neuroscience applications including seizure, tumor treatment, and visual circuitry. The intellectual merit of this proposed research includes the understanding of (1) how nanomaterials interface with neurons at the cellular or subcellular level; (2) the fundamental limitations to neural electrode sizes and optical channels; (3) nanomaterials properties under extreme physical conditions. Besides, this developed toolset will enable significant new insights into various neuroscience applications through interdisciplinary research across multiple fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世界上近六分之一的人口患有神经系统疾病,包括癫痫、帕金森病、自闭症、阿尔茨海默病、抑郁症等,他们的生活质量受到严重影响。为了以最小的副作用有效地治疗这些与大脑有关的疾病,我们需要充分了解大脑中的功能网络。然而,这一努力在很大程度上受到了制造与大脑功能复杂性和机械顺应性相匹配的深层脑接口设备的工程挑战的阻碍。目前迫切需要创造一种多功能设备,能够与大脑无缝连接,而不会造成重大损害。本研究计划提出开发高度灵活,生物相容性,可扩展和临床可翻译的新型神经接口设备,具有多位点多功能功能。开发的工具集还将用于解决生物应用中的一些关键挑战,重点是癫痫、肿瘤和视觉系统。为了实现这些目标,拟议的研究计划将建立在多个领域的前沿研究基础上,包括纳米材料、光学、电子、表面化学、微制造和神经科学,旨在显著推进这些领域的基本理解。这项拟议的研究为社会提供了许多潜在的好处,包括改善神经系统疾病患者生活的可能性。这项研究将与针对K12学生和教师、本科生和研究生的多层次教育组成部分高度整合,重点关注代表性不足的学生群体。例如,针对弗吉尼亚州十多所一级学校的五年级学生的“从幼儿园到大学”项目,以及针对弗吉尼亚州和州外高中女生的弗吉尼亚理工大学计算机和技术项目。PI还将积极参与国家科学基金会的革命性工程部门拨款,以改变弗吉尼亚理工大学电气和计算机工程系的本科教育。拟议研究计划的目标是解决利用非传统纤维绘制和图案平台开发生物友好和多功能神经接口的关键挑战。所采用的方法包括纳米材料加工和建模、多材料多功能纤维制造和图像化、电化学表征和电路建模、光学表征和建模、体外和体内神经刺激和记录。该项目将实现灵活的、生物相容的、纳米电极集成的、双向的、多位点的三维神经接口。它可以促进对复杂大脑功能的理解以及神经系统疾病的治疗。该计划的具体目标是:(1)纳米集成电极的可扩展制造。通过全面的表征以及机械和电气建模,将获得对材料性质和电荷转移的基本理解。(2)多功能集成与建模相结合,了解材料和结构的局限性。(3)体外和体内神经刺激和记录神经科学应用,包括癫痫、肿瘤治疗和视觉回路。这项拟议研究的智力价值包括理解(1)纳米材料如何在细胞或亚细胞水平上与神经元界面;(2)神经电极尺寸和光通道的基本限制;(3)纳米材料在极端物理条件下的性能。此外,该开发的工具集将通过跨多个领域的跨学科研究,为各种神经科学应用提供重要的新见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing
  • DOI:
    10.3390/polym11121985
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    M. Tousi;Yujing Zhang;Shaowei Wan;Li Yu;Chong Hou;Ning Yan;Y. Fink;Anbo Wang;X. Jia
  • 通讯作者:
    M. Tousi;Yujing Zhang;Shaowei Wan;Li Yu;Chong Hou;Ning Yan;Y. Fink;Anbo Wang;X. Jia
Multifunctional Fiber‐Based Optoacoustic Emitter as a Bidirectional Brain Interface
基于多功能光纤的光声发射器作为双向大脑接口
  • DOI:
    10.1002/adhm.202300430
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Zheng, Nan;Jiang, Ying;Jiang, Shan;Kim, Jongwoon;Chen, Guo;Li, Yueming;Cheng, Ji‐Xin;Jia, Xiaoting;Yang, Chen
  • 通讯作者:
    Yang, Chen
Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving
  • DOI:
    10.1016/j.nanoen.2020.104805
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Feng, Ziang;Yang, Shuo;Jia, Xiaoting
  • 通讯作者:
    Jia, Xiaoting
3D printed stretchable triboelectric nanogenerator fibers and devices
  • DOI:
    10.1016/j.nanoen.2020.104973
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Yuxin Tong;Ziang Feng;Jongwoon Kim;J. Robertson;X. Jia;Blake N. Johnson
  • 通讯作者:
    Yuxin Tong;Ziang Feng;Jongwoon Kim;J. Robertson;X. Jia;Blake N. Johnson
Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation
  • DOI:
    10.1002/adhm.202300964
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Zhang,Yujing;Wu,Xiaobo;Jia,Xiaoting
  • 通讯作者:
    Jia,Xiaoting
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoting Jia其他文献

Hormone Regulation of Tissue-Type Plasminogen Activator Gene Expression and Plasminogen Activator-Mediated Proteolysis
组织型纤溶酶原激活剂基因表达的激素调节和纤溶酶原激活剂介导的蛋白水解
  • DOI:
    10.1055/s-2007-1002622
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Monica Ohlsson;Xiao;Yi;Xiaoting Jia;Aaron Hsueh;T. Ny
  • 通讯作者:
    T. Ny
Implantable polymer composite electrode with carbon nano fibers (CNF) aligned during thermal drawing as a reliable chronic neural interface
植入式聚合物复合电极,在热拉伸过程中排列碳纳米纤维 (CNF),作为可靠的慢性神经接口
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seongjun Park;Yuanyuan Guo;Xiaoting Jia;Han Kyoung Choe;Benjamin Grena;Jeewoo Kang;Jiyeon Park;Chi Lu;Andres Canales;Ritchie Chen;Yeong Shin Yim;Gloria B Choi;Yoel Fink and Polina Anikeeva;Yuanyuan Guo
  • 通讯作者:
    Yuanyuan Guo
Neuroelectronics
神经电子学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Jiang;Dipan C Patel;Jongwoon Kim;Shuo Yang;William A Mills;Yujing Zhang;Kaiwen Wang;Ziang Feng;Sujith Vijayan;Wenjun Cai;Anbo Wang;Yuanyuan Guo;Ian F Kimbrough;Harald Sontheimer;Xiaoting Jia;郭媛元
  • 通讯作者:
    郭媛元
Study of astrocytes in modulating anxiety-related behavior via multifunctional fibers
星形胶质细胞通过多功能纤维调节焦虑相关行为的研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Jiang;Dipan C Patel;Jongwoon Kim;Shuo Yang;William A Mills;Yujing Zhang;Kaiwen Wang;Ziang Feng;Sujith Vijayan;Wenjun Cai;Anbo Wang;Yuanyuan Guo;Ian F Kimbrough;Harald Sontheimer;Xiaoting Jia;郭媛元;郭媛元;Yuanyuan Guo;Yuanyuan Guo;Yuanyuan Guo and Ko Matsui;Yuanyuan Guo and Ko Matsui
  • 通讯作者:
    Yuanyuan Guo and Ko Matsui
Breaking the Wall of Brain-Machine Interface
打破脑机接口的壁垒
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Jiang;Dipan C Patel;Jongwoon Kim;Shuo Yang;William A Mills;Yujing Zhang;Kaiwen Wang;Ziang Feng;Sujith Vijayan;Wenjun Cai;Anbo Wang;Yuanyuan Guo;Ian F Kimbrough;Harald Sontheimer;Xiaoting Jia;郭媛元;郭媛元;Yuanyuan Guo;Yuanyuan Guo;Yuanyuan Guo and Ko Matsui;Yuanyuan Guo and Ko Matsui;Yuanyuan Guo
  • 通讯作者:
    Yuanyuan Guo

Xiaoting Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable high-density hydrogen storage by nano-bubbles in layered materials
通过层状材料中的纳米气泡进行可扩展的高密度储氢
  • 批准号:
    LP200300577
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    DGECR-2019-00371
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Launch Supplement
Multi-Functional, Scalable and Controllable Nano-Structured Surfaces
多功能、可扩展且可控的纳米结构表面
  • 批准号:
    RGPIN-2016-04604
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Additive Nanomanufacturing of Scalable, Three-dimensional Nano-Architectures for Ultra-lightweighting and Resilience
可扩展三维纳米结构的增材纳米制造,实现超轻量化和弹性
  • 批准号:
    2001677
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Infection free and scalable production of DNA oligonucleotides for mass production of nano-objects by self-assembling
无感染且可规模化生产 DNA 寡核苷酸,通过自组装大规模生产纳米物体
  • 批准号:
    405686451
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
Multi-Functional, Scalable and Controllable Nano-Structured Surfaces
多功能、可扩展且可控的纳米结构表面
  • 批准号:
    RGPIN-2016-04604
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了