CAREER: Fundamental Controls of Transport Attributes from Porous Media Microstructure

职业:多孔介质微观结构输运属性的基本控制

基本信息

  • 批准号:
    1847689
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Clean groundwater, a primary source of drinking water for many people, is a valuable Earth resource. Risks of groundwater contamination frequently arise from natural, agricultural, or industrial activities. To preserve the safety of these drinking water sources, it is crucial to understand how contaminants are expected to move and spread underground. An important factor that influences the movement of contaminants is the variability of the void spaces in soil and rocks known as pores. Complex flow patterns arise as groundwater moves through intricate pores of different shapes and sizes, which make predictions of flow complicated. Many mathematical predictions of groundwater flow ignore the complex variability in pores. This oversimplification results in a large discrepancy between flow predictions and observations. The central scientific goal of this project is to better understand how contaminant movement is controlled by measurable features of the pores. The first step of this project will statistically identify the most relevant attributes of pores that effectively describe flow in rock. The second step will apply this relationship to develop a new mathematical model of flow and contaminant movement. Collectively, this work will deliver more accurate tools to predict contaminant movement and to help protect water resources. The project will train students and water managers through the development of an interactive web-based tool designed to allow users to understand and manipulate groundwater flow in a virtual environment.Solving the flow and mass transport through heterogeneous porous media is central to many technological applications spanning groundwater remediation, oil recovery, and geotechnical engineering. The approaches to do so are currently limited, because the required calculations become computationally expensive as accuracy and domain size increase. The central scientific goal of this project is to establish a formal quantitative relationship that explains how local fluid velocities and overall flow arrangement are controlled by spatially correlated variations of geometric pore characteristics. This association would enable predicting non-Gaussian velocity distributions from relevant statistical descriptors of the pore space alone, which in turn can be used to predict effective transport. Finding this elusive link will lead to significant improvements in predictive capabilities for groundwater flow and contaminant transport in heterogeneous porous systems of arbitrary domain size. To achieve this goal, the proposed work will first statistically identify how velocity variations are induced by the physical attributes of the underlying pore space in digitally-scanned rock samples of diverse heterogeneities. These virtual data contain detailed information of the structure, the flow and the transport. Next, the newly-determined pore structure-flow relation will be integrated into the leading modeling framework for anomalous transport behavior and assessed for performance. The main educational goal is to enhance student understanding about how groundwater flows and how contaminants spread in it. This will be done through the development of interactive web tools for non-experts (targeting high-school, college and continued education students) that can be used in flipped-classroom environments. The interactive tool design allows the user to manipulate groundwater models, explore the results as automatically-generated graphics, and discover answers to their own questions in a self-directed application of the scientific method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
清洁的地下水是许多人饮用水的主要来源,也是宝贵的地球资源。地下水污染的风险经常源自自然、农业或工业活动。为了保护这些饮用水源的安全,了解污染物如何在地下移动和扩散至关重要。影响污染物运动的一个重要因素是土壤和岩石中称为孔隙的空隙空间的变化。当地下水流过不同形状和大小的复杂孔隙时,会出现复杂的流动模式,这使得流量预测变得复杂。许多地下水流的数学预测都忽略了孔隙的复杂变化。这种过度简化导致流量预测和观测之间存在巨大差异。该项目的核心科学目标是更好地了解污染物的移动是如何通过可测量的毛孔特征来控制的。该项目的第一步将统计确定有效描述岩石流动的最相关的孔隙属性。第二步将应用这种关系来开发流量和污染物运动的新数学模型。总的来说,这项工作将提供更准确的工具来预测污染物的移动并帮助保护水资源。 该项目将通过开发基于网络的交互式工具来培训学生和水管理人员,该工具旨在让用户在虚拟环境中了解和操纵地下水流。解决通过非均质多孔介质的流量和质量传输是地下水修复、石油回收和岩土工程等许多技术应用的核心。目前实现此目的的方法是有限的,因为随着精度和域大小的增加,所需的计算在计算上变得昂贵。该项目的中心科学目标是建立一种正式的定量关系,解释局部流体速度和整体流动排列如何通过几何孔隙特征的空间相关变化来控制。这种关联将能够仅根据孔隙空间的相关统计描述符来预测非高斯速度分布,这反过来又可用于预测有效传输。找到这种难以捉摸的联系将显着提高任意域大小的异质多孔系统中地下水流和污染物传输的预测能力。为了实现这一目标,拟议的工作将首先统计确定不同异质性的数字扫描岩石样本中底层孔隙空间的物理属性如何引起速度变化。这些虚拟数据包含结构、流程和传输的详细信息。接下来,新确定的孔隙结构-流动关系将被集成到异常传输行为的领先建模框架中并评估性能。主要教育目标是增强学生对地下水如何流动以及污染物如何在其中扩散的了解。这将通过为非专家(针对高中、大学和继续教育学生)开发可在翻转课堂环境中使用的交互式网络工具来完成。交互式工具设计允许用户操纵地下水模型,探索自动生成的图形结果,并在科学方法的自主应用中发现自己问题的答案。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent advances in anomalous transport models for predicting contaminants in natural groundwater systems
用于预测天然地下水系统污染物的异常传输模型的最新进展
  • DOI:
    10.1016/j.coche.2019.09.006
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Bolster, Diogo;Roche, Kevin R.;Morales, Veronica L.
  • 通讯作者:
    Morales, Veronica L.
Retention Site Contribution Toward Silver Particle Immobilization in Porous Media
保留位点对多孔介质中银颗粒固定的贡献
  • DOI:
    10.1029/2021wr031807
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Patiño, Janis E.;Pérez‐Reche, Francisco J.;Morales, Verónica L.
  • 通讯作者:
    Morales, Verónica L.
Flow Path Resistance in Heterogeneous Porous Media Recast into a Graph-Theory Problem
非均质多孔介质中的流路阻力重新转化为图论问题
  • DOI:
    10.1007/s11242-021-01671-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kanavas, Z.;Pérez-Reche, F. J.;Arns, F.;Morales, V. L.
  • 通讯作者:
    Morales, V. L.
Direct Measurements of the Forces between Silver and Mica in Humic Substance-Rich Solutions
直接测量富含腐殖质溶液中银和云母之间的力
  • DOI:
    10.1021/acs.est.0c05334
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Patiño, Janis E.;Kuhl, Tonya L.;Morales, Verónica L.
  • 通讯作者:
    Morales, Verónica L.
Internal Biofilm Heterogeneities Enhance Solute Mixing and Chemical Reactions in Porous Media
  • DOI:
    10.1021/acs.est.2c09082
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Markale,Ishaan;Carrel,Maxence;Jimenez-Martinez,Joaquin
  • 通讯作者:
    Jimenez-Martinez,Joaquin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Veronica Morales其他文献

Veronica Morales的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Veronica Morales', 18)}}的其他基金

Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
  • 批准号:
    2345366
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: In-situ Hybrid Layerwise Rolling and Sealing in Laser Powder-bed Fusion Manufacturing of Tungsten: Fundamental Processing Mechanisms and Transition Temperature Controls
职业:钨激光粉末床熔融制造中的原位混合层状轧制和密封:基本加工机制和转变温度控制
  • 批准号:
    2240069
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Integrated high-resolution stratigraphy: Deciphering fundamental controls on basin evolution
综合高分辨率地层学:破译盆地演化的基本控制因素
  • 批准号:
    RGPIN-2018-05039
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated high-resolution stratigraphy: Deciphering fundamental controls on basin evolution
综合高分辨率地层学:破译盆地演化的基本控制因素
  • 批准号:
    RGPIN-2018-05039
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated high-resolution stratigraphy: Deciphering fundamental controls on basin evolution
综合高分辨率地层学:破译盆地演化的基本控制因素
  • 批准号:
    RGPIN-2018-05039
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated high-resolution stratigraphy: Deciphering fundamental controls on basin evolution
综合高分辨率地层学:破译盆地演化的基本控制因素
  • 批准号:
    RGPIN-2018-05039
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated high-resolution stratigraphy: Deciphering fundamental controls on basin evolution
综合高分辨率地层学:破译盆地演化的基本控制因素
  • 批准号:
    RGPIN-2018-05039
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental controls on mid-crustal 'escape' flow in orogenic systems
造山系统中地壳“逃逸”流的基本控制
  • 批准号:
    1802730
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Fundamental controls on plant root exudation under climate change
气候变化下植物根系分泌物的根本控制
  • 批准号:
    1792130
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Precise controls and fundamental understandings of oxidation reactions to for ultrathin oxides at Ge surfaces for future nano-devices
对未来纳米器件中 Ge 表面超薄氧化物氧化反应的精确控制和基本理解
  • 批准号:
    26420289
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental controls on mudstone lithofacies variability
泥岩岩相变异的根本控制
  • 批准号:
    374570-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了