CAREER: Ionic-Type Phononic Metamaterials: Physics and Acousto-Fluidic Applications

职业:离子型声子超材料:物理和声流体应用

基本信息

  • 批准号:
    1847733
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Cardiovascular diseases are the leading causes of death and disability in the western world and are a great burden to modern society; an estimated 17.5 million people every year die from them. A number of recent studies have shown that the levels of circulating endothelial progenitor cells in blood stream is good predictor of the heart disease risk. However, current methods to detect these rare circulating cells are only suitable for well-equipped research laboratories. There remains an unmet medical need for development of point-of-care biomedical technologies allowing rapid and reliable quantification of endothelial progenitor cells directly from patient's blood. This research program proposes to develop novel microfluidic technologies based on phononic (acoustic) metamaterials (artificial materials) for high- efficiency size-based enrichment, affinity-base isolation and label-free counting of endothelial progenitor cells from blood samples. To achieve these goals, the proposed research program aims to make a remarkable leap in understanding and use of acoustic forces created on piezoelectric substrates. Similar to electronics, it aims to introduce a complete set of acoustic-microfluidic components that can be combined to provide full laboratory functions on a chip platform. In addition to providing training opportunities for graduate students, the educational component of this program incorporates unrepresented minorities from undergraduate programs such as Multicultural Engineering Program and offers mentored summer research experiences (internships) to local high school students. Furthermore, the proposed program aims to contribute in outreach activities through programs such as Girls in Engineering Program, a program focused on middle school girls and to provide senior design project opportunities to final year undergraduate students.This research program aims to introduce novel acousto-microfluidic devices with new functionalities using on phononic bandgap structures. It focuses particularly on ionic-type phononic metamaterials offering a monolithic integration capability to piezoelectric substrates. This opens door to planar and scalable integration of phononic bandgap structures with microfluidics and acoustic wave sources. Merging phononic bandstructure engineering and microfluidics at a fundamental level could lead to modular lab-on-chip technologies that can be programmed to do different tasks in a compact and highly efficient way. The specific goals of this program are (1) to advance of our understanding of two-dimensional phononic metamaterials to guide, trap and focus acoustic phonons, (2) to merge these two-dimensional phononic metamaterials with microfluidics, and (3) to demonstrate practical uses of these novel acousto- microfluidic devices for sorting, isolation and counting of endothelial progenitor cells for detection of hearth diseases. The proposed research program involves theoretical analysis of monolithic phononic metamaterials, acoustic radiation forces and dynamic behavior of micro- bioparticles in acousto-microfluidic channels. The designed phononic metamaterial devices will be fabricated using in-house fabrication facilities and the powerful fabrication techniques recently developed in Yanik lab. Acousto-microfluidic experiments will be conducted to test, refine and advance theoretical models of these metamaterials and understanding of acoustic radiation forces in solution environment. Yanik lab will also demonstrate practical uses of phononic bandgap devices for size/affinity-based sorting, manipulation and isolation of micro- bioparticles in microfluidic channels for biomedical applications. The intellectual merit of the proposed research lies in the fundamental knowledge of ways to manipulate surface acoustic waves by phononic metamaterials to optimize their use in microfluidic systems. Understanding advantages and technical issues associated with employing phononic metamaterials will lead to a deeper insight into their unprecedented potential for more involved schemes of acoustofluidic particle manipulation. This will be accomplished by interdisciplinary research combining our expertise from physics, electrical engineering and biological sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病是西方世界导致死亡和残疾的主要原因,是现代社会的一个巨大负担;据估计,每年有1750万人死于这些疾病。最近的一些研究表明,血液中循环内皮祖细胞的水平是心脏病风险的良好预测指标。然而,目前检测这些罕见循环细胞的方法只适用于设备齐全的研究实验室。对于能够直接从患者血液中快速、可靠地定量内皮祖细胞的即时生物医学技术的开发,仍存在未满足的医疗需求。本研究计划拟开发基于声子(声学)超材料(人工材料)的新型微流控技术,用于高效的基于尺寸的富集,基于亲和力的分离和来自血液样本的内皮祖细胞的无标记计数。为了实现这些目标,提出的研究计划旨在在理解和利用压电基板上产生的声学力方面取得显著的飞跃。与电子学类似,它旨在引入一套完整的声学微流控元件,这些元件可以在芯片平台上组合以提供完整的实验室功能。除了为研究生提供培训机会外,该项目的教育部分还包括来自多元文化工程等本科项目的未被代表的少数民族,并为当地高中生提供有指导的暑期研究经历(实习)。此外,拟议的计划旨在通过诸如“工程女生计划”等项目促进外展活动,该计划主要针对中学女生,并为大四本科生提供高级设计项目的机会。本研究计划旨在利用声子带隙结构,引进具有新功能的新型声微流控装置。它特别关注离子型声子超材料,为压电衬底提供单片集成能力。这为声子带隙结构与微流体和声源的平面和可扩展集成打开了大门。将声子带结构工程和微流体学在基础上结合起来,可以产生模块化的芯片实验室技术,这种技术可以通过编程以紧凑高效的方式完成不同的任务。该项目的具体目标是:(1)提高我们对二维声子超材料的理解,以引导、捕获和聚焦声子;(2)将这些二维声子超材料与微流体结合起来;(3)展示这些新型声学微流体装置在检测心脏疾病时对内皮祖细胞进行分类、分离和计数的实际应用。本研究计划涉及单片声子超材料的理论分析、声辐射力和微生物粒子在声微流控通道中的动力学行为。设计的声子超材料器件将使用内部制造设备和Yanik实验室最近开发的强大制造技术制造。声学微流控实验将测试、完善和推进这些超材料的理论模型,以及对溶液环境中声辐射力的理解。Yanik实验室还将展示声子带隙装置的实际应用,用于生物医学应用的微流体通道中基于尺寸/亲和力的微生物颗粒的分选、操作和分离。所提出的研究的智力价值在于通过声子超材料操纵表面声波以优化其在微流体系统中的应用的基本知识。了解声子超材料的优势和相关的技术问题,将使我们更深入地了解声子超材料在声学流体粒子操纵方面前所未有的潜力。这将通过结合我们在物理、电气工程和生物科学方面的专业知识的跨学科研究来实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmet Yanik其他文献

Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of In-Hospital Mortality Among COVID-19 Patients
CHA2DS2VASc 和 R2CHA2DS2VASc 评分对 COVID-19 患者院内死亡率估计的比较
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faruk Boyaci;Mustafa Kursat Sahin;Yanki Boyaci;Ahmet Yanik;Gokhan Aksan;COVİD;Hastane İçi;Mortalitenin CHA₂DS₂VASc;R₂CHA₂DS₂VASc Skor;Tahmininin Karşılaştırılması
  • 通讯作者:
    Tahmininin Karşılaştırılması
Comparison of thallium-201 exercise SPECT and dobutamine stress echocardiography for diagnosis of coronary artery disease in patients with left bundle branch block
  • DOI:
    10.1023/a:1011973530231
  • 发表时间:
    2001-10-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Izzet Tandoğan;Ertan Yetkin;Ahmet Yanik;F. Vasfi Ulusoy;Ahmet Temizhan;Sengül Cehreli;Ali Sasmaz
  • 通讯作者:
    Ali Sasmaz

Ahmet Yanik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmet Yanik', 18)}}的其他基金

I-Corps: Massively Parallel High-Resolution Optical Electrophysiology
I-Corps:大规模并行高分辨率光学电生理学
  • 批准号:
    2225739
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative Therapies
合作研究:等离激元纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心肌细胞的大规模多重识别
  • 批准号:
    1611290
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Monolithic Phononic Crystals and Programmable Surface Acoustic Wave Microfluidics
EAGER:单片声子晶体和可编程表面声波微流体
  • 批准号:
    1642502
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

ionic Hubbard 模型中符号问题与量子相变的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
LiNO3 - Ionic Liquids/H2O新型吸收式热泵工质对的物性与应用研究
  • 批准号:
    51506005
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms for enhancing n-type polaronic transport in transition metal oxides: ionic size, pair formation/clustering, and valence effects
增强过渡金属氧化物中 n 型极化子输运的机制:离子大小、成对形成/成簇和价态效应
  • 批准号:
    2003563
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Study of Ionic Conduction Mechanism of Perovskite-type Oxides with Unusually High-valence Iron Ions
异常高价铁离子钙钛矿型氧化物的离子传导机理研究
  • 批准号:
    19K15585
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of ionic liquid-type anionic polymer materials for new ion conduction pathways
新型离子传导通道离子液体型阴离子聚合物材料的开发
  • 批准号:
    19H02783
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an ionic liquid extraction luminescence sensing system for phosphate ions with multipoint recognition-type rare earth complexes
多点识别型稀土配合物离子液体萃取磷酸根离子发光传感系统的研制
  • 批准号:
    19K15605
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation and structure-property correlation of new structural-type ionic conductors
新型结构型离子导体的制备及其构效关系
  • 批准号:
    19H00821
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Environmentally Friendly Ionic Liquids and Labor-saving: Synthesis of Truxene-type Molecules on the Basis of Analysis of Reaction Mechanisms
环保、省力的离子液体:基于反应机理分析的Truxene型分子的合成
  • 批准号:
    19K05564
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
new development on extraction-separation chemistry using new type of ionic liquids switchable their solubility
使用新型离子液体可切换溶解度的萃取分离化学的新进展
  • 批准号:
    17K19139
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dynamically structural control and development of energy-storing type fuel cells based on ionic electronic transport
基于离子电子输运的储能型燃料电池的动态结构控制与开发
  • 批准号:
    17H00801
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Ionic liquid-type liquid electrolytes based on molten Li salt complexes
基于熔融锂盐配合物的离子液体型液体电解质
  • 批准号:
    16H06053
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Lignin sulfonic acid-based self-healing materials via bridging by using an ionic liquid-type dication
利用离子液体型双阳离子桥联的木质素磺酸基自修复材料
  • 批准号:
    15K12242
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了